首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Geotextile is an effective reinforcement approach of slopes that experiences various loads such as drawdown. The geotextile reinforcement mechanism is essential to effectively evaluate the safety of geotextile-reinforced slopes under drawdown conditions. A series of drawdown centrifuge model tests were performed to investigate the deformation and failure behaviors of slopes reinforced with different geotextile layouts. The deformation and failure of unreinforced and reinforced slopes were compared and the geotextile reinforcement was indicated to significantly increase the safety limit and the ductility, reduce the displacement, and change the failure feature of slopes under drawdown conditions. The slopes exhibited remarkable progressive failure, downward from the slope top, under drawdown conditions. The progressive failure was induced by coupling of deformation localization and local failure based on full-field measurements of displacement of slopes subjected to drawdown. The geotextile reinforced the slope by decreasing and uniformizing the slope deformation by the soil-geotextile interaction. Through geotextile displacement analysis, the geotextile-reinforced slope was divided into the anchoring zone and the restricting zone by a boundary that was independent of the decrease of water level. The geotextile restrained the soil in the anchoring zone and the soil restrained the geotextile in the restricting zone. The reinforcement effect was distinct only when the geotextile was long enough to cross the slip surface of the unreinforced slope under drawdown conditions.  相似文献   

2.
土钉加固黏性土坡动力离心模型试验研究   总被引:1,自引:0,他引:1  
 很多滑坡是由地震引发的,为了防止或减轻地震造成的边坡灾害,目前在边坡的加固治理方面已经发展并形成一些较好的方法,而土钉是边坡抗震加固的一种简便有效的方法。采用动力离心模型试验方法,再现地震条件下土钉加固黏性土坡和素土坡的响应;测量了试验过程中边坡的位移场和加速度响应的变化过程。基于试验结果,通过对比素土坡和土钉加固土坡的动力响应,探讨土钉加固土坡的变形规律和加固机制。试验结果表明,地震过程中土坡产生不可恢复的累积变形,其大小与输入的地震加速度峰值有关。通过比较土钉加固土坡和素土坡的位移分布,研究土钉加固土坡的机制。引入土单元应变进行分析,结果表明,土钉加固措施能显著地改变边坡的位移场分布,限制土坡的剪切变形,避免滑裂面的产生,从而提高了边坡的稳定性。  相似文献   

3.
The behaviour and performance of different reinforced slopes during earthquake loading were investigated through a series of shaking table tests. Concrete-canvas and composite reinforcement (geogrid attached to concrete-canvas) were proposed for reinforcing slopes. By considering the effects of different reinforcement methods, the seismic responses of the reinforced slopes were analysed, along with the accelerations, crest settlements, and lateral displacements. The failure patterns of different model slopes were compared using white coral sand marks placed at designated elevations to monitor the internal slide of the reinforced slopes. Both the concrete-canvas and composite reinforcement could increase the safety distance, which ranged from the slide-out point to the back of the model box. The composite reinforcement decreased the volume of the landslide and increased the failure surface angle as a result of the larger global stiffness in the reinforced zone. These results indicate that the recently developed concrete canvas has a better effect on restricting the slope deformation during seismic loading than the nonwoven geotextile reinforcement, and that the use of composite reinforcement could improve the seismic resistance of slopes.  相似文献   

4.
Formulation and verification for a force equilibrium-based finite displacement method (FFDM) using test results of reinforced model slopes subjected to increasing pseudo-static seismic forces are reported. The FFDM requires, in addition to force equilibrium for a sliced potential failure mass, a hyperbolic shear stress–displacement constitutive law for the backfill soils, a hyperbolic pull-out force–displacement constitutive law for the reinforcement, and a displacement compatibility requirement for adjacent soil slices. As a result, the mobilized reinforcement force is an analytical output, rather than an empiricism-based input as required in conventional limit equilibrium analyses. Analytical results from the FFDM also indicated that a brittle failure is associated with the lightly reinforced failure surface; a ductile failure is associated with the heavily reinforced failure surface, regardless of the extensibility of reinforcement investigated in the present study. Good agreements between the measured and the computed slope displacements and reinforcement forces in response to increases in pseudo-static seismic forces suggest that the FFDM can be used as an analytical tool for evaluating displacements of reinforced slopes subjected to pseudo-static seismic loads.  相似文献   

5.
《Soils and Foundations》2014,54(6):1175-1187
Soil–nailing technology is widely applied in practice for reinforcing slopes. A series of centrifuge model tests was conducted on slopes reinforced with a soil nail wall under three types of loading conditions. The behavior and mechanism of failure process of the reinforced slopes were studied using image-based observation and displacement measurements for the slope, nails, and cement layer. The nailing significantly increased the stability level and restricted the tension cracks of the slopes. Increasing the nail length improved the stability of the reinforced slopes with deeper slip surfaces. The reinforced slope exhibited a significant failure process, in which slope slippage failure and cement layer fracture occurred in conjunction with a coupling effect. The deformation localization was induced by the loading within the slope and ultimately developed into a slip surface. The nailing reinforced the slope by significantly delaying the occurrence of the deformation localization within the slope. The failure of nails was recognized as a combination of pull-out failure and bend deformation. The loading conditions were shown to have a significant effect on slope deformation and nail deflection, and they consequently influenced the failure behavior and its formation sequence.  相似文献   

6.
Today, geosynthetic-reinforced soil structures are widely used to support bridge abutments and approach roads in place of traditional pile supports and techniques. In such situations, foundation conditions have been shown to adversely affect the stability and deformation behaviour of overlying geosynthetic-reinforced slopes and walls. This paper addresses the response of geotextile-reinforced slopes subjected to differential settlements in a geotechnical centrifuge. Centrifuge model tests were carried out on model geotextile-reinforced sand slopes with two different types of reinforcement. A wrap-around technique was used to represent a flexible facing. In order to initiate failure in the reinforcement layers, the ratio of length of reinforcement to height of the slope was maintained as 0.85. One of the objectives of this paper is to present about a special device developed for inducing differential settlements during centrifuge test at 40g for a reinforced soil structure. A digital image analysis technique was employed to arrive at displacement vectors of markers glued to the reinforcement layers. The displacements were used to compute and analyze the strain distribution along the reinforcement layers during different settlement stages. Results of the centrifuge test indicate that even after inducing a differential settlement equivalent to 1.0 m in prototype dimensions, the geotextile-reinforced soil structure with a flexible facing was not found to experience a collapse failure. Analysis of geotextile strain results shows that the location of the maximum peak reinforcement strain occurs along the bottom-most reinforcement layer at the onset of differential settlements, at the point directly below the crest of the slope.  相似文献   

7.
Soil nails have been widely used to retain excavations and stabilize steep cutslopes. A series of dynamic centrifuge model tests were conducted on nail-reinforced and unreinforced slopes during an earthquake, with several influence factors, including the nail length, nail spacing, and the inclination of slope, taken into consideration. The unreinforced slope exhibited a progressive failure in the middle and lower parts though the global slip surface did not appear due to the earthquake, which was arrested by using the nail reinforcement. The nails changed the dynamic acceleration response of the slope during the earthquake. The deformation of the slope was significantly decreased by the nails within a nail-influence zone. This zone involved the slip surface of the unreinforced slope, and was almost completely independent on the layout of the nail-reinforcement when the nails had sufficient length. A point couple analysis, a strain analysis, and a uniformity analysis were carried out in an attempt to determine why nails can increase the stability of a slope. It was discovered that the nails forced the deformation of the slope to be more uniform and thus arrested possible strain localization under earthquake conditions. As such, it is suggested that increasing nail length or decreasing nail spacing can both improve the nail-reinforcement effect, and increase the stability level of a slope.  相似文献   

8.
This paper examines the stability of geotextile-reinforced slopes when subjected to a vertical load applied to a strip footing positioned close to the slope crest. Vertical spacing between geotextile reinforcement was varied while maintaining a constant slope angle, load position, soil density and geotextile type. Small-scale physical tests were conducted using a large beam centrifuge to simulate field prototype conditions. After the model was accelerated to 40g, a load was applied to the strip footing until slope failure occurred. Digital image analysis was performed, using photographs taken in-flight, to obtain slope displacements and strain distribution along the reinforcement layers at different loading pressures during the test and at failure. Stability analysis was also conducted and compared with centrifuge model test results. The vertical spacing between reinforcement layers has a significant impact on the stability of a reinforced slope when subjected to a vertical load. Less vertical distance between reinforcement layers allows the slope to tolerate much greater loads than layers spaced further apart. Distributions of peak strains in reinforcement layers due to the strip footing placed on the surface of the reinforced slope were found to extend up to mid-height of the slope and thereafter they were found to be negligible. Stability analysis of the centrifuge models was found to be consistent with the observed performance of geotextile-reinforced slopes subjected to loading applied to a strip footing near the crest.  相似文献   

9.
Recent studies on construction material technology have indicated that soil reinforcement improves resistance of soil against compression and tension. Due to the wide use of geotextile reinforcement in road construction, the potential benefit of geotextile reinforcement in cyclic loading should be investigated. In this study we performed a series of cyclic triaxial tests to examine dry silty sand reinforced with geotextile when subjected to dynamic loading. These tests were conducted on reinforced and unreinforced dry sand and sand mixed with varying amounts of silt (0–50%). The main factors affecting the cyclic behaviour, such as the arrangement and number of geotextile layers, confined pressure and silt content are examined and discussed in this paper. The results indicate that geotextile inclusion and increased confining pressure increase the axial modulus and decreased cyclic ductility of dry sand for all silt contents examined. Also, it was found that by increasing the silt content by up to about 35 percent the axial modulus in reinforced and unreinforced sand is decreased and cyclic ductility increased. With further increases in silt content, these values are increased for cyclic axial modulus and decreased for cyclic ductility.  相似文献   

10.
加筋生态护坡是土工织物与植草相结合形成的一种护坡形式,在保证工程生态性的同时大大提高了生态护坡的强度,有广泛的应用前景。以黑龙江同抚堤防工程粉砂土岸坡防护工程为例,开展了三维加筋生态护坡结构的现场原位测试与加筋土体力学特性室内试验研究,揭示了该护坡技术固土护坡力学效应。试验结果表明:对比纯植被护坡和遮阳网表层覆盖护坡方式,三维加筋生态护坡结构对土体加筋作用最为有效。土工网可以帮助植被根系在岸坡表层形成良好的加筋层,而植被根系则帮助土工网与岸坡土体更紧密地结合。加筋生态结构效果主要表现为增加了土体黏聚力,但对内摩擦角影响不大;一个生长周期内草本型植被根系加筋区域集中在地面以下20cm左右的深度;土体含水率和含根量对根土复合体抗剪强度有明显影响,随着土体中含根量和含水率的增加,根土复合体抗剪强度呈先增加后减少的趋势,即对于高羊茅这类抗剪型根系,其加固土体时存在最佳含根量和含水率使其强度最高。  相似文献   

11.
This paper presents a numerical study on the load-bearing performance of reinforced slopes under footing load using a finite element limit analysis (FELA) method where a non-associated flow rule is assumed in the analysis. The method was validated against results from full-scale model tests and a limit equilibrium (LE) analytical method. A series of parametric analyses was subsequently carried out to examine the influences that the soil dilation angle, footing location, and reinforcement design (i.e. length, tensile strength, and vertical spacing) could have on the load-bearing performance of reinforced slopes. Results indicate that dilation angle has a significant influence on the predicted magnitudes of bearing capacity, slope deformation, and mobilized reinforcement load. The predicted values of bearing capacity using the FELA are smaller than those from the Meyerhof's analytical method for unreinforced semi-infinite foundation, especially for larger friction angle values. Additionally, the ultimate bearing capacity of the slope and its corresponding horizontal deformation increase with the reinforcement tensile strength. Finally, the slip planes under the applied footing load are found to be y-shaped and primarily occur in the upper half of the slope.  相似文献   

12.
加筋边坡在坡顶荷载作用下的极限承载能力   总被引:11,自引:0,他引:11       下载免费PDF全文
采用大型室内试验的方法,研究了两个土工格栅加固的土坡和一个未加固边坡在坡顶荷载作用下的变形与破坏规律。本文重点介绍大型模型的实验设计、测试技术和研究方法。实验结果表明,土工格栅加固边坡的承载能力为相同条件下未加固边坡的1.6-2倍。  相似文献   

13.
The effect of non-woven geotextile reinforcement on the stability and deformation of two clay test embankments is examined based on their performance for about 3 years for the first embankment and about years for the other. Horizontal planar sheets of a non-woven geotextile are expected to work in three ways: for compaction control; for drainage; for tensile reinforcement. The degree of stability of the steep slopes of the test embankments decreased during heavy rainfall. It is found that the use of non-woven geotextile reinforcement may effectively improve embankment performance. Only the stability analysis in terms of effective stresses can explain the performance of the test embankments. The horizontal creep deformation of the embankments during 2–3 years, which is partly attributed to the creep deformation of the non-woven geotextile, was found to be small. The results of both laboratory bearing capacity tests of a strip footing on a model sand ground reinforced with the non-woven geotextile and plane strain compression tests on sand specimens reinforced with the non-woven geotextile show that the non-woven geotextile gives tensile reinforcement to soils.  相似文献   

14.
加筋土坡因其填方量少、工期短、经济安全等优势在国内外已得到广泛应用,故其稳定性分析也显得尤为重要。目前,已有多位学者将极限分析上 限定理运用于加筋土坡的稳定性分析中,并假定水平条块速度间断面。然而在其分析过程中,构造的速度场并不符合位移协调条件。提出了由于筋材的隔断 作用形成的斜向界面破坏模式,并计算相应速度场式,分别提出主动、库仑、被动三种滑移模式。通过计算比较发现,在加筋间距较密时,库仑模式总是相 应安全系数最小的控制工况。实际工作中,可以只使用这一概念清晰、计算简便的方法分析加筋土坡的稳定性。为方便工程设计快速获取安全系数或筋材间 距,将土坡各参数进行无量纲化,绘制了安全系数图,并与Michalowski设计图表进行对比,验证了该算法的有效性。且针对多个实际工程算例进行验算, 验证了库仑模式上限法的可行性。  相似文献   

15.
The objective of this paper is to study the performance of hybrid geosynthetic reinforced slopes, with permeable geosynthetic as one of its components, for low permeable backfill slopes subjected to seepage. Four centrifuge tests have been performed to study the behavior of hybrid geosynthetic reinforced slopes subjected to seepage, keeping the model slope height and vertical spacing of geosynthetic reinforcement layers constant. Centrifuge model tests were performed on 2V:1H slopes at 30 gravities. One unreinforced, one model geogrid reinforced and two hybrid geosynthetic reinforced slope models with varying number of hybrid geosynthetic layers were tested. The effect of raising ground water table was simulated by using a seepage flow simulator during the flight. Surface movements and pore water pressure profiles for the slope models were monitored using displacement transducers and pore pressure transducers during centrifuge tests. Markers glued on to geosynthetic layers were digitized to arrive at displacement vectors at the onset of raising ground water table. Further, strain distribution along the geosynthetic reinforcement layers and reinforcement peak strain distribution have been determined using digital image analysis technique. The discharge for the performed model tests is determined by performing seepage analysis. It was confirmed by the centrifuge tests that the hybrid geosynthetics increases the stability of low permeable slope subjected to water table rise. The hybrid geosynthetic layers in the bottom half of the slope height play a major role in the dissipation of pore water pressure.  相似文献   

16.
The behavior of geotextile-reinforced embankments during an earthquake was investigated using centrifuge model tests, considering a variety of factors such as gradient of slope, water content of soil, geotextile spacing, and input shaking wave. The geotextile-reinforcement mechanism was revealed on the basis of the observations with comparison of the unreinforced embankment. The geotextile significantly decreases the deformation of the embankment and restricts sliding failure that occurs in the unreinforced embankment during an earthquake. The displacement exhibits an evidently irreversible accumulation with a fluctuation during the earthquake which is significantly dependent on the magnitude of input shaking. The peak strain of the geotextile exhibits a nearly triangular distribution in the vertical direction. The embankment can be divided into two zones, a restricting zone and restricted zone, where the soil and geotextile, respectively, play an active restriction role in the soil-geotextile interaction. The soil restricts the geotextile in the restricting zone, and this restriction is transferred to the restricted zone through the geotextile. The strain magnitude of the geotextile and the horizontal displacement of the geotextile-reinforced embankment decrease with increasing geotextile layers, with decreasing water content of the soil, with decreasing gradient of the slope, and with decreasing amplitude of the earthquake wave.  相似文献   

17.
The paper investigates the uplift performance of horizontal anchor plate in geocell reinforced sand through a series of model tests. It is noted that the unreinforced anchor plate undergoes a clear failure at a displacement of about 3% of its width, whereas with the provision of geocell and a layer of geotextile right below the geocell mattress significantly increases the uplift capacity by about 4.5 times higher than that of unreinforced sand and could sustain anchor displacement of more than 60%. Results indicates that the geocell mattress by virtue of its rigidity distributes the uplift load in the lateral directions to a larger area, thereby reducing the stress in the overlying soil mass and hence increases the performance of anchor plate system. The provision of the additional geotextile layer right below the geocell mattress is found to be very effective in increasing the stiffness as well as load carrying capacity of anchor plate system. The optimum size (i.e., width and length) of geocell mattress giving adequate load carrying capacity of anchor plate is found to be 5.4 times of anchor width (5.4B). The comparison of model tests results with 3D numerical analysis shows good agreement, indicating that the proposed model is able to capture the uplift load-displacement behaviour of geocell reinforced anchor plate system.  相似文献   

18.
加筋高边坡的稳定分析   总被引:1,自引:0,他引:1  
采用强度折减法对两个高度分别为 60 m 和 40 m 的土工格栅加筋高边坡的设计断面进行稳定分析,综合考虑塑性区贯通、特征点位移突变、计算不收敛,以及土工格栅的容许抗拉强度等确定相应的安全系数。计算表明采用不同的破坏标准,强度折减法会得到不同的安全系数;如果筋材强度始终得到保证,单纯由土材料的强度损失诱发边坡失稳,这种情况对应的安全系数是比较高的。考虑筋材强度,边坡会在较小的折减系数下因为筋材强度不足而失稳。有限元法能够得到不同情况下各层筋材的受力情况,可以据此进行加筋力的分配,这是极限平衡法所不具备的。  相似文献   

19.
模拟库水位变化的抗滑桩加固边坡离心模型试验研究   总被引:1,自引:2,他引:1  
 抗滑桩是边坡深层抗滑最为有效的措施之一,以三峡库区边坡抗滑桩加固工程为背景,利用离心模型试验手段,模拟库区蓄水和水位循环变化条件下失稳边坡的抗滑桩加固机制。详细介绍相应的离心模型试验方法,通过对一系列自然边坡和不同桩间距条件下的模型试验,获得库水位变化影响下的边坡变形、破坏模式和抗滑桩受力,探讨滑坡推力的分布以及不同桩间距条件下的抗滑桩–边坡相互作用机制。测试结果表明,受抗滑桩加固的边坡在水位升降作用下仍发生一定程度的变形并产生裂缝,随着抗滑桩的直接支挡和桩后土体由于不均匀位移产生土拱效应后,边坡变形逐渐得到较好的控制。在本试验条件下,随着桩间距的增大,边坡变形总体上表现为增大趋势,但抗滑桩的受力呈现出先增大后减小的抛物线型变化形态,在某一最适桩间距情况下抗滑桩的抗滑性能得到了最充分的发挥,而滑坡推力表现出复合三角形分布特征。该研究结果为桩土相互作用和库区边坡抗滑桩加固机制分析提供了直接的试验依据,对丰富抗滑桩设计理论和库区边坡的防灾减灾研究具有较为重要的意义。  相似文献   

20.
为了克服模型的尺寸效用,获得加筋与不加筋边坡在条形荷载下的各种性状参数和边坡的破坏机制,建立用于分析和模拟3个大型室内足尺加筋与不加筋边坡破坏机制的数值计算模型。边坡回填材料采用级配较差的粗砂,土体的非线性弹性响应采用Duncan-Chang双曲线模型E-B模式加以描述,破坏准则采用Mohr-Coulomb屈服准则,并采用与屈服条件不相关联的流动法则。加筋材料采用两节点的弹塑性锚索结构单元进行模拟,并采用无厚度的弹簧-滑动系统来模拟筋土之间的相互作用和相对运动。数值计算采用基于有限差分的连续介质快速拉格朗日分析方法(FLAC),分别对与破坏面位置和形态密切相关的节点位移速度向量、塑性区和剪应变速率分布3个参数进行了计算,获得了3个边坡在条形极限荷载下的双楔体破坏机制和极限承载力,与试验结果吻合较好,验证了模型的可行性。在此基础上,对不同的条形荷载位置及不同填土材料强度下边坡破坏机制进行了数值模拟和分析。研究结果表明,无论加筋与不加筋边坡,当条形荷载位置距坡肩的距离减小时,边坡破坏面形态由双楔体过渡到圆弧形;当填土材料强度降低时,破裂面形态转化为圆弧形或对数螺线形。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号