首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Load transfer of the graphene/carbon nanotube (CNT)/polyethylene hybrid nanocomposite is studied here from molecular dynamics (MD) simulations. Simulations of this composite material under uniaxial tension were conducted by varying CNT’s position and diameter in the polymer matrix. The obtained results show that: (1) The peak strength of stress and strain evolution in the polymer matrix is lower than the peak strength of the graphene/graphene and graphene/polymer interfaces. Hence, the damage zone is always located in the polymer matrix. (2) Agglomerated two-layer graphenes do not possess an increased value in the peak strength compared with single-layer graphene-reinforced polymer nanocomposite (PNC), while two separate layers of graphene show slightly higher peak strength. (3) The largest peak strength is observed before CNT moves to the center of the polymer matrix. The damage location moves from the upper to the lower part of CNT when the CNT is located at the centre of polymer matrix. (4) The influence of the CNT diameter on the peak strength is not obvious, while the damage location and shape in the polymer matrix changes with respect to varying CNT diameters. In addition, the damage zone always falls outside the interphase zone.  相似文献   

2.
The mechanical behavior of unidirectional fiber-reinforced polymer composites subjected to tension and compression perpendicular to the fibers is studied using computational micromechanics. The representative volume element of the composite microstructure with random fiber distribution is generated, and the two dominant damage mechanisms experimentally observed – matrix plastic deformation and interfacial debonding – are included in the simulation by the extended Drucker–Prager model and cohesive zone model respectively. Progressive failure procedure for both the matrix and interface is incorporated in the simulation, and ductile criterion is used to predict the damage initiation of the matrix taking into account its sensitivity to triaxial stress state. The simulation results clearly reveal the damage process of the composites and the interactions of different damage mechanisms. It can be concluded that the tension fracture initiates as interfacial debonding and evolves as a result of interactions between interfacial debonding and matrix plastic deformation, while the compression failure is dominated by matrix plastic damage. And then the effects of interfacial properties on the damage behavior of the composites are assessed. It is found that the interfacial stiffness and fracture energy have relatively smaller influence on the mechanical behavior of composites, while the influence of interfacial strength is significant.  相似文献   

3.
Carbon nanotubes (CNTs) are an excellent candidate for the reinforcement of composite materials owing to their distinctive mechanical and electrical properties. Reticulate carbon nanotubes (R-CNTs) with a 2D or 3D configuration have been manufactured in which nonwoven connected CNTs are homogeneously distributed and connected with each other. A composite reinforced by R-CNTs can be fabricated by infiltrating a polymer into the R-CNT structure, which overcomes the inherent disadvantages of the lack of weaving of the CNTs and the low strength of the interface between CNTs and the polymer. In this paper, a 2D plane strain model of a R-CNT composite is presented to investigate its micro-deformation and effective stiffness. Using the two-scale expansion method, the effective stiffness coefficients and Young’s modulus are determined. The influences of microstructural parameters on the micro-deformation and effective stiffness of the R-CNT composite are studied to aid the design of new composites with optimal properties. It is shown that R-CNT composites have a strong microstructure-dependence and better effective mechanical properties than other CNT composites.  相似文献   

4.
The nanoscale transitional zone between a nanofiber and surrounding matrix (interphase) defines the ultimate mechanical characteristics in nanocomposite systems. In spite of this importance, one can hardly find quantitative data on the mechanical properties of this transitional zone in the cellulose–nanofiber composites. In addition, most of the theoretical models to predict the mechanical properties of interphase are developed with the assumption that this transitional zone is independent of the nanofiber size. In the current study, we show that the mechanical properties of interphase in cellulose nanocrystal (CNC) composites can be quantitatively characterized and the correlation with the size of CNCs can be mapped. The peak force tapping mode in atomic force microscope (AFM) was used to characterize deformation, adhesion, and modulus gradient of the interphase region in poly(vinyl alcohol) (PVA)–poly(acrylic acid) (PAA)–cellulose nanocrystal (CNC) composites. In comparison to the polymer matrix, the adhesion force of CNC was lower. The average elastic modulus in the interphase varied from 12.8 GPa at the interface of CNC to 9.9 GPa in PVA–PAA matrix. It was observed that the existence of PAA increased the gradient of mechanical and adhesion properties of the interphase zone. This occurs due to the variation in the ester linkage density from the CNC interface to the polymer matrix. Finally, it is shown that interphase thickness is higher for CNCs with larger diameter.  相似文献   

5.
This paper deals with a new micromechanics model of particulate-reinforced composites (PRCs) describing the evolution of debonding damage, matrix plasticity and particle size effect on the deformation. A ductile interphase was considered in the frame of incremental damage theory to analyze the dependence of elastic–plastic–damage behavior on particle size. Progressive debonding damage was controlled by a critical energy criterion for particle–matrix interfacial separation. The equivalent stresses of the matrix and interphase were determined by field fluctuation method. The influences of progressive debonding damage, particle size and interphase properties on the overall stress–strain response of PRC were explained simultaneously. Due to the existence of a ductile interphase, stress transfer and plastic initiation in PRC become very complicated, and thus a unit-cell (UC) based FEM was used to simulate their evolutions and demonstrate the role of the interphase. Finally, particle size effect on the mechanical behaviors of composites was interpreted.  相似文献   

6.
Progressive failure of unidirectional glass fiber-reinforced polymer composites (FRP) was studied using finite element analysis in orthogonal machining. Chip formation process and damage modes such as matrix cracking, fiber–matrix debonding and fiber breaking were modelled by degrading the material properties. Damage analysis was carried out using Hashin, Maximum stress and Hoffman failure criteria. After damage was detected, selective stiffness degradation was applied to the workpiece material. The objective of this study is to better understand the chip formation process and to analyse the cutting-induced damage from initiation stage until complete chip formation. The effect of the fiber orientation on cutting forces and sub-surface damage was investigated with different failure criteria. The results were addressed in terms of cutting forces evolution and damage progression in the composite structure during machining. It was demonstrated that the use of the stiffness degradation concept with the appropriate failure criterion responds potentially in a predictable fashion to changes in chip formation process for machining of FRPs.  相似文献   

7.
In the present work, carbon nanotube (CNT) fibers had been embedded to glass fiber reinforced polymers (GFRP) for the structural health monitoring of the composite material. The addition of the conductive CNT fiber to the non-conductive GFRP material aims to enhance its multi-function ability; the test specimen’s response to mechanical load and the insitu CNT fiber’s electrical resistance measurements were correlated for sensing and damage monitoring purposes. It is the first time this fiber is used in composite materials for sensing purposes; CNT fiber is easy to be embedded and does not downgrade the material’s mechanical properties. Various incremental loading–unloading steps had been applied to the manufactured specimens in tension as well as in three-point bending tests. The CNT fiber worked as a sensor in both, tensile and compression loadings. A direct correlation between the mechanical loading and the electrical resistance change had been established for the investigated specimens. For high stress (or strain) level loadings, residual resistance measurements of the CNT fiber were observed after unloading. Accumulating damage to the composite material had been calculated and was correlated to the electrical resistance readings. The established correlation between these parameters changed according to the material’s loading history.  相似文献   

8.
Polymer composites can be benefited in many ways through the addition of carbon nanotubes (CNT). For instance, CNT can build up a percolated network within the polymer matrix, which results in a composite material with electrical conductivity and piezoresistive characteristics. This has very important implications for the realization of self-stress sensing structural composites. Moreover, the remarkable optical and transport properties of CNT permit to obtain information about the stress state of the composite at different scales. In the present work, the local and global stress response of SWCNT-epoxy composites is characterised by simultaneous Raman spectroscopic and electrical measurements on nanocomposite specimens submitted to different levels of surface strain. Both the Raman G′-band resonance frequency and the electrical resistance of the composite are found to change monotonically with strain until an inflection point is reached at ∼1.5% strain. Increased sensitivity of the piezoresistive network and lower load transfer efficiency occur beyond this strain level, and are considered to be the result of CNT slippage from the polymer. The reversibility of the stress sensitivity of the composites is verified by performing cyclic loading tests. Hysteresis loop are found to develop earlier on the Raman curves as in the resistance curves, which indicates that even at low strain levels, permanent damage is induced in the vicinity of carbon nanotubes. The use of Raman spectroscopy in combination with electrical methods provides a further insight on the stress sensing capabilities of CNT and the factors which affect the sensitivity and reproducibility of this behaviour.  相似文献   

9.
Interface cohesive stress transfer between FRP and concrete during debonding is typically obtained using measured surface strains on the FRP, along the direction of the fibers. The cohesive material law is derived under a set of assumptions which include: (a) the bending stiffness of the FRP laminate is insignificant with respect to that of the concrete test block; (b) the strains in the bulk concrete produced by debonding are negligible, thus concrete substrate can be considered rigid; (c) there is stress transfer between FRP and concrete through the FRP–concrete interface which is of zero thickness; and (d) the axial strain in the FRP composite is uniform across its thickness. In this paper, a test procedure for directly obtaining the through-thickness strains in the FRP and the concrete substrate during cohesive stress transfer associated with debonding is presented. The displacement and strain fields are measured on the side of a direct-shear specimen with the FRP strip attached on the edge. Based on the experimental results, the influence of the assumptions which have been introduced to determine the cohesive law is discussed. Within the stress transfer zone there is a sharp gradient in the shear strain. The location of the interface crack within the stress transfer zone and the cohesive stress transfer during the propagation of the interface crack are determined.  相似文献   

10.
The in-situ bulk polycondensation process in combination with a ball milling dispersion process was used to prepare the water blown multiwall carbon nanotubes (CNT)/polyurethane (PU) composite foam. The mechanical properties, piezoresistive properties, strain sensitivity, stress and resistance relaxation behaviors of the composite foams were investigated. The results show that the CNT/PU composite foam has a better compression strength than the unfilled polyurethane foams and a negative pressure coefficient behavior under uniaxial compression. The resistance response of CNT/PU nanocomposites foam under cyclic compressive loading was quite stable. The nanocomposite foam containing a weight fraction of carbon nanotubes close to the percolation threshold presents the largest strain sensitivity for the resistance. The characteristic of resistance relaxation of CNT/PU composite foam is different from the stress relaxation due to the different relaxation mechanism. During compressive stress relaxation, the CNT/PU foam composites have excellent resistance recoverability while poor stress recoverability.  相似文献   

11.
The present paper proposes an approach to characterizing fibre/matrix (F/M) interface in carbon/carbon (C/C) composites with respect to both modes of loading that may be expected: opening or shearing. Push-out and tensile tests were used. The former tests involve the shearing mode whereas the latter ones involve the opening one. Push-out tests use a diamond indenter to load the fibres. The interface sliding shear stress was obtained from the load-fibre displacement curve. The tensile tests were conducted on specimens having fibres oriented at 90° with respect to loading direction in order to preferentially open the interfaces. Interface opening strength was extracted from the composite tensile stress–strain behaviour. The specimens were examined under load and after ultimate failure by optical microscopy (OM). The mechanical properties of the F/M interfaces were then discussed.  相似文献   

12.
The tensile creep behavior of an oxide–oxide continuous fiber ceramic composite was investigated at 1200 °C in laboratory air, in steam and in argon. The composite consists of a porous alumina–mullite matrix reinforced with laminated, woven mullite/alumina (Nextel™720) fibers, has no interface between the fiber and matrix, and relies on the porous matrix for flaw tolerance. The tensile stress–strain behavior was investigated and the tensile properties measured at 1200 °C. The elastic modulus was 74.5 GPa and the ultimate tensile strength was 153 MPa. Tensile creep behavior was examined for creep stresses in the 70–140 MPa range. Primary and secondary creep regimes were observed in all tests. Creep run-out (set to 100 h) was achieved in laboratory air for creep stress levels ?91 MPa. The presence of either steam or argon accelerated creep rates and reduced creep lifetimes. Composite microstructure, as well as damage and failure mechanisms were investigated.  相似文献   

13.
This paper presents the development of glass fibres coated with nanocomposites consisting of carbon nanotubes (CNTs) and epoxy. Single glass fibres with different CNT content coating are embedded in a polymer matrix as a strain sensor for composite structures. Raman spectroscopy and electrical response of glass fibres under mechanical load are coupled for in situ sensing of deformation in composites. The results show that the fibres with nanocomposite coating exhibit efficient stress transfer across the fibre/matrix interface, and these with a higher CNT content are more prone to fibre fragmentation at the same matrix strain. A relationship between the fibre stress and the change in electrical resistance against the fibre strain is established. The major finding of this study has a practical implication in that the fibres with nanocomposite coating can serve as a sensor to monitor the deformation and damage process in composites.  相似文献   

14.
Mats of vertically-aligned multiwall carbon nanotubes were grown in an thermal CVD reactor with simultaneous feed of the catalyst and carbon precursors. Mats were soaked into epoxy resin solutions without any prior chemical modification and then cured to produce composite plates of z-axis nano-reinforcement. Direct observations of the epoxy–CNT interactions at the nanoscale revealed that epoxy interacted naturally with the MWCNTs without affecting their physical characteristics, alignment, or the mat’s morphology. The compressive behavior of the pristine and composite mats was consistent with mechanical predictions accounting for an elastic regime followed by elastic instability and compaction. Strong evidence of reinforcement in the MWCNT/epoxy composites was indicated by increased strength, stiffness and toughness values with respect to the as-grown mats and pure polymer. The elastic instability strain of the composites was of the order of 0.4.  相似文献   

15.
Fiber reinforced high temperature polymer matrix composites are currently gaining wide usage in aircraft structures, especially in airframe and engine inlet casing. The failure of composites in worst-case operational conditions mandates the extensive investigation of the mechanical behavior, and the durability in long-term performance and service life under thermal oxidation. In this work, unidirectional IM7 carbon fiber reinforced high-temperature BMI resin composite (IM7/5250-4) were isothermally aged in air for 2 months at 195 °C and 245 °C, respectively. The dynamic behavior of thermally aged composites was investigated on a split Hopkinson pressure bar (SHPB) in three principal directions. The results indicate that thermal oxidation leads to significant reduction in both stiffness and strength of the composites. Optical micrographs of fracture surface and failure pattern of composite after SHPB impact reveals oxidation induced debonding along the fiber–matrix interface due to oxygen diffusion under long-term exposure to elevated temperatures.  相似文献   

16.
This paper deals with a constitutive model of particulate-reinforced composites (PRCs) which can describe the evolution of debonding damage, matrix plasticity and particle size effects on deformation and damage. An incremental damage model of PRC based on Mori–Tanaka’s mean field concept has been extended to three-phase composites for interpreting particle size effect. The interphase was perfectly incorporated into the present micromechanics model as a third phase with the help of double-inclusion model. Progressive damage was controlled by a critical energy criterion for particle–matrix interfacial separation. Based on the developed model, influences of progressive debonding damage, particle size and interphase properties on the overall stress–strain response of PRC were discussed. Finally, particle size effect on the mechanical behaviors of composites was clearly interpreted from the role of the interphase, which is different from all the existing researches.  相似文献   

17.
Polyvinyl alcohol–carbon nanotube (PVA–CNT) fibers were embedded in glass fiber reinforced plastic composites and used as strain sensors for damage monitoring of the composite. Sensing of the structural integrity of the composite was made by the in situ measurement of the electrical resistance of the embedded PVA–CNT fiber during the mechanical tests. The multi-functional materials were tested in tensile progressive damage accumulation (PDA) tests. These tests aimed to seek the electrical response of untreated and pre-stretched PVA–CNT fibers with known level of progressively induced damage to the composite. The advantages and disadvantages of each PVA–CNT fiber used as a sensor are analyzed; the electrical resistance readings of the PVA–CNT fibers were correlated with known parameters that express the induced damage of the composite.  相似文献   

18.
Compared to the small diameter of a carbon nanotube (CNT), the thickness of the CNT–matrix interphase in a CNT–composite is considerable. Hence, the interphase property can significantly influence the macroscopic properties of the composite. This paper applies an effective multi-scale method to explore such an interphase effect on the properties of nano-composites reinforced by single-walled CNTs. The method integrates the van der Waals (vdW) gap interphase, the dense interphase, and the randomly distributed wavy CNTs in a matrix to realize an accurate prediction of macroscopic properties with a nanoscopic resolution, by using a conventional finite element code commercially available. The study concluded that with the same volume fraction, increasing CNT waviness and diameter reduces the composite Young's modulus, and that ignoring either the vdW gap interphase or the dense interphase can lead to an erroneous characterization, and that both interphases can be ignored in some circumstances.  相似文献   

19.
Fully biobased composite materials were fabricated using a natural, lignocellulosic filler, namely oak wood flour (OWF), as particle reinforcement in a biosynthesized microbial polyester matrix derived from poly(β-hydroxybutyrate)-co-poly(β-hydroxyvalerate) (PHBV) via an extrusion injection molding process. The mechanisms and effects of processing, filler volume percent (vol%), a silane coupling agent, and a maleic anhydride (MA) grafting technique on polymer and composite morphologies and tensile mechanical properties were investigated and substantiated through calorimetry testing, scanning electron microscopy, and micromechanical modeling of initial composite stiffness. The addition of 46 vol% silane-treated OWF improved the tensile modulus of neat PHBV by 165%. Similarly, the tensile modulus of MA-grafted PHBV increased 170% over that of neat PHBV with a 28 vol% addition of untreated OWF. Incorporation of OWF reduced the overall degree of crystallinity of the matrix phase and induced embrittlement in the composites, which led to reductions in ultimate tensile stress and strain for both treated and untreated specimens. Deviations from the Halpin–Tsai/Tsai–Pagano micromechanical model for composite stiffness in the silane and MA compatibilized specimens are attributed to the inability of the model both to incorporate improved dispersion and wettability due to fiber–matrix modifications and to account for changes in neat PHBV and MA-grafted PHBV polymer morphology induced by the OWF.  相似文献   

20.
Carbon nanotube (CNT) reinforced polymeric composites provide a promising future in structural engineering. To understand the bridging effect of CNT in the events of the fracture of CNT reinforced composites, the finite element method was applied to simulate a single CNT pullout from a polymeric matrix using cohesive zone modelling. The numerical results indicate that the debonding force during the CNT pullout increases almost linearly with the interfacial crack initiation shear stress. Specific pullout energy increases with the CNT embedded length, while it is independent of the CNT radius. In addition, a saturated debonding force exists corresponding to a critical CNT embedded length. A parametric study shows that a higher saturated debonding force can be achieved if the CNT has a larger radius or if the CNT/matrix has a stronger interfacial bonding. The critical CNT embedded length decreases with the increase of the interfacial crack initiation shear stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号