共查询到20条相似文献,搜索用时 0 毫秒
1.
In this study, a simple 1D finite element model was developed to predict the temperature evolution and post-fire mechanical degradation of glass fiber reinforced polymers (FRPs) subjected to constant heat fluxes, including 35 kW/m2, 50 kW/m2, 75 kW/m2, and 100 kW/m2. A temperature-dependent post-fire mechanical property model was proposed and implemented. The calculated temperature and residual mechanical moduli showed good agreement with the experimental data. By properly selecting the parameters of the model, an effective strategy was demonstrated to design FRP structure with enhanced durability. 相似文献
2.
Microcapsules containing phase change materials (microPCMs) can be filled in polymeric matrix forming smart temperature-controlling composites. The aim of this study was to investigate the effect of interface debonding on the thermal conductivity of microPCMs containing paraffin/epoxy composites. The shell thickness and average size of microPCMs were controlled by regulating the core/shell ratios and emulsion stirring rates. Test results indicated that the thermal conductivity (Ke) of all composites decreased after a thermal shock treatment. SEM and thermography measurements were applied to observe the interface behaviors of composites after a violent thermal treatment process. It was proved that the interface debonding was generated because of the mismatch of expansion coefficient between shell and epoxy. A modeling analysis of the relative thermal conductivity (Kr) indicated that the effective approach to decrease the debonding is to enhance the molecule tangling degree between shell and matrix. 相似文献
3.
To determine the amount of deformation resulting from fibre wrinkling at corner regions, a set of experiments have been conducted. As known in the conventional lay-up method, the prepregs are laid sequentially layer by layer on the mould surface. At the corner region of a female tool the radius decreases at the inner surface and the amount of wrinkles increase towards the top layer as the layers are laid up. In order to determine how much these wrinkles influence the dimensional stability of the manufactured parts, an alternative lay-up method is used. The amount of the wrinkles can be increased for the parts of same geometry by first stacking prepregs on a flat plate and then bending the whole stack to conform to the surface of the L-shaped mould. In this method, more wrinkling occurs on the inner surface of the corner regions as compared to the conventional lay-up procedure. It was found that fibre wrinkling decreases the spring-in values. The mechanism behind that observation is discussed with the help of a heuristic Finite Element Analysis (FEA). The conformation of the stacked prepregs on the mould was simulated by using FEA. 相似文献
4.
The fracture behavior of composite bonded joints subjected to mode-I, mode-II and mixed-mode I + II loading conditions was characterized by mechanical testing and numerical simulation. The composite adherents were bonded using two different epoxy adhesives; namely, the EA 9695 film adhesive and the mixed EA 9395-EA 9396 paste adhesive. The fracture toughness of the joints was evaluated in terms of the critical energy release rate. Mode-I tests were conducted using the double-cantilever beam specimen, mode-II tests using the end-notch flexure specimen and mixed-mode tests (three mixity ratios) using a combination of the two aforementioned specimens. The fracture behavior of the bonded joints was also simulated using the cohesive zone modeling method aiming to evaluate the method and point out its strengths and weaknesses. The simulations were performed using the explicit FE code LS-DYNA. The experimental results show a considerable scatter which is common for fracture toughness tests. The joints attained with the film adhesive have much larger fracture toughness (by 30–60%) than the joints with the paste adhesive, which exhibited a rather brittle behavior. The simulation results revealed that the cohesive zone modeling method performs well for mode-I load-cases while for mode-II and mixed-mode load-cases, modifications of the input parameters and the traction-separation law are needed in order for the method to effectively simulate the fracture behavior of the joints. 相似文献
5.
Glass-fibre reinforced polymer (GFRP) sandwich structures (1.6 m × 1.3 m) were subject to 30 kg charges of C4 explosive at stand-off distances 8–14 m. Experiments provide detailed data for sandwich panel response, which are often used in civil and military structures, where air-blast loading represents a serious threat. High-speed photography, with digital image correlation (DIC), was employed to monitor the deformation of these structures during the blasts. Failure mechanisms were revealed in the DIC data, confirmed in post-test sectioning. The experimental data provides for the development of analytical and computational models. Moreover, it underlines the importance of support boundary conditions with regards to blast mitigation. These findings were analysed further in finite element simulations, where boundary stiffness was, as expected, shown to strongly influence the panel deformation. In-depth parametric studies are ongoing to establish the hierarchy of the various factors that influence the blast response of sandwich composite structures. 相似文献
6.
This work aims at developing a hot sizing process on composite materials to correct the profiles of composite structures during manufacture. Hot sizing experiments were carried out at 150 °C with different sizing loads and hot sizing periods for L-shaped composite beams made of carbon fiber plain-weave fabric and epoxy resin. To predict the springback in hot sizing process, a corresponding finite element simulation method was developed using stress relaxation equations determined at the same temperature. Excellent agreements between the predicted and observed results were obtained. The effects of the component thickness and 45° ply percentage on the springback rate were investigated by simulation. Springback rate in hot sizing process on composite materials ranges from 60% to 95%. In conclusion hot sizing process is proved to be a valid method for compensation for the process-induced deformation (PID) of L-shaped composite beams. 相似文献
7.
Drawing, winding, and pressing techniques were used to produce horizontally aligned carbon nanotube (CNT) sheets from free-standing vertically aligned CNT arrays. The aligned CNT sheets were used to develop aligned CNT/epoxy composites through hot-melt prepreg processing with a vacuum-assisted system. Effects of CNT diameter change on the mechanical properties of aligned CNT sheets and their composites were examined. The reduction of the CNT diameter considerably increased the mechanical properties of the aligned CNT sheets and their composites. The decrease of the CNT diameter along with pressing CNT sheets drastically enhanced the mechanical properties of the CNT sheets and CNT/epoxy composites. Raman spectra measurements showed improvement of the CNT alignment in the pressed CNT/epoxy composites. Research results suggest that aligned CNT/epoxy composites with high strength and stiffness are producible using aligned CNT sheets with smaller-diameter CNTs. 相似文献
8.
A three-dimensional (3D) micromechanical study has been performed in order to investigate local damage in unidirectional (UD) composite materials with epoxy resin under transverse tensile loading. In particular the effect of different mechanical properties of a 3D interphase within the hexagonal array RVE have been considered and effects of thermal residual stress arising during the curing process have been accounted for in this study. To examine the effect of interphase properties and residual stress on failure, a study based on the temperature-dependent properties of matrix and interphase and a stiffness degradation technique has been used for damage analysis of the unit cell subjected to mechanical loading. Results indicate a strong dependence of damage onset and its evolution from the different interphase properties within the RVE (representative volume element). Moreover, predicted mechanical properties, damage initiation and evolution are also clearly influenced by the presence of residual stress. Numerical results and experimental data (in the literature) have also shown an interesting agreement. 相似文献
9.
M. Grujicic G. Arakere T. He W.C. Bell P.S. Glomski B.A. Cheeseman 《Composites Part B》2009,40(6):468-482
The open-literature material properties for fiber and polymeric matrix, unit-cell microstructural characteristics, atomic-level simulations and unit-cell based finite-element analyses are all used to construct a new continuum-type ballistic material model for 0°/90° cross-plied highly-oriented polyethylene fiber-based armor-grade composite laminates. The material model is formulated in such a way that it can be readily implemented into commercial finite-element programs like ANSYS/Autodyn [ANSYS/Autodyn version 11.0, User Documentation, Century Dynamics Inc. a subsidiary of ANSYS Inc. (2007)] and ABAQUS/Explicit [ABAQUS version 6.7, User Documentation, Dessault Systems, 2007] as a User Material Subroutine. Model validation included a series of transient non-linear dynamics simulations of the transverse impact of armor-grade composite laminates with two types of projectiles, which are next compared with their experimental counterparts. This comparison revealed that a reasonably good agreement is obtained between the experimental and the computational analyses with respect to: (a) the composite laminates’ capability, at different areal densities, to defeat the bullets with different impact velocities; (b) post-mortem spatial distribution of damage within the laminates; (c) the temporal evolution of composite armor laminate back-face bulging and delamination; and (d) the existence of three distinct penetration stages (i.e. an initial filament shearing/cutting dominated stage, an intermediate stage characterized by pronounced filament/matrix de-bonding/decohesion and the final stage associated with the extensive back-face delamination and bulging of the armor panel). 相似文献
10.
Yasuhide Shindo Masaya MiuraTomo Takeda Nozomi SaitoFumio Narita 《Composites Science and Technology》2011,71(5):647-652
This paper investigates the fatigue delamination growth behavior in woven glass fiber reinforced polymer (GFRP) composite laminates under mixed-mode I/II conditions at cryogenic temperatures. Fatigue delamination tests were performed with the mixed-mode bending (MMB) test apparatus at room temperature, liquid nitrogen temperature (77 K) and liquid helium temperature (4 K), in order to obtain the delamination growth rate as a function of the range of the energy release rate, and the dependence of the delamination growth behavior on the temperature and the mixed-mode ratio of mode I and mode II was examined. The energy release rate was evaluated using three-dimensional finite element analysis. The fractographic examinations by scanning electron microscopy (SEM) were also carried out to assess the mixed-mode fatigue delamination growth mechanisms in the woven GFRP laminates at cryogenic temperatures. 相似文献
11.
The bending strength of underfilled and edge-bonded ball grid array (BGA) microelectronic packages assembled on printed circuit boards (PCBs) was compared using double cantilever beam (DCB) specimens. All specimens with fillets of the same size and shape failed at the same load, with cracks initiating and propagating within the PCB. This was consistent with measurements of the crack initiation strain energy release rate for PCB interfacial failure, which was significantly smaller than that of cohesive failure within the adhesives. Finite element analysis (FEA) indicated that the stress state in the PCB near the PCB-fillet interface in both underfilled and edge-bonded specimens was only a function of the adhesive fillet size and shape, and independent of the extent of the adhesive layer between the PCB and the BGA, and independent of the adhesive mechanical and thermal properties over the broad range of properties of the tested adhesives. This explained why decreasing the fillet curvature in edge-bonded specimens produced a significant increase in the joint strength. The crack path in the PCB of the edge-bonded specimens was found to change with the adhesive cure temperature; however, this had a negligible effect on the failure load. 相似文献
12.
This study describes a control system designed for real-time monitoring of damage in materials that employs methods and models that account for uncertainties in experimental data and parameters in continuum damage mechanics models. The methodology involves (1) developing an experimental set-up for direct and indirect measurements of damage in materials; (2) modeling damage mechanics based constitutive equations for continuum models; and (3) implementation of a Bayesian framework for statistical calibration of model with quantification of uncertainties. To provide information for real-time monitoring of damage, indirect measurement of damage is made feasible using an embedded carbon nanotube (CNT) network to perform as sensor for detecting the local damage. A software infrastructure is developed and implemented in order to integrate the various constituents, such as finite element approximation of the continuum damage models, generated experimental data, and Bayesian-based methods for model calibration and validation. The outcomes of the statistical calibration and dynamic validation of damage models are presented. The experimental program designed to provide observational data is discussed. 相似文献
13.
This work simulates numerically Double Cantilever Beam and End Notched Flexure experiments on Carbon Fibre Epoxy Resin specimens that have been performed by some of the authors in a previous work. Specimens have been nanomodified by interleaving plies with a layer of electrospun nanofibres in the delaminated interface. Eight different configurations of nanofibres have been used as interleave, for a total of 9 configurations (8 nanomodified plus the virgin one) to be simulated for both kind of tests to identify the cohesive zone parameters corresponding to the effect of nanofibre diameter, nanolayer thickness and nanofibre orientation on the delamination behaviour of the composite.Results showed that a bilinear damage law is necessary for almost all nanomodified configurations, and presented a clear relationship between nanomat layer parameters and the cohesive energy of the interface. 相似文献
14.
A representative elementary volume (REV) in epoxy syntactic foams was generated to incorporate randomly distributed glass microballoons that followed a log-normal size distribution. Finite element modelling of the REV foam was developed and experimentally validated to investigate the elastic behaviour and failure mechanism in the foams with different microballoon volume fractions (V). The localised stresses concentrate in various zones within the foam, and can cause the vertical splitting fracture of microballoons and the micro-crack formation in the matrix. Dependent on the microballoon volume fraction, micro-cracks can propagate to join adjacent micro-cracks and voids left by fractured microballoons, and finally develop into a macro-crack either in the preferred longitudinal (for low V) or diagonal (for high V) directions. This is consistent with the macroscopic observations of the fracture process in the foam specimens. It was also found that elastic characteristics of the foam vary with microballoon volume fractions. 相似文献
15.
Strain monitoring of a carbon/epoxy composite cross-ply laminate ([05/905]s) during thermoforming was conducted by using fiber Bragg grating (FBG) sensors. The entire process was simulated by employing finite element analysis (FEA) by taking into consideration the phase changes of the epoxy resin. For the precise simulation of the curing process, a dielectrometry sensor was used to detect the epoxy-resin dissipation factor, which in turn was used to identify the curing point. To investigate the phase changes and consolidation of the composite laminate by employing FEA, modulus changes with temperature were measured by dynamic mechanical analysis (DMA), and the permeability was estimated by measuring the fiber volume fraction according to the curing temperature. As the epoxy resin changed from a liquid to solid phase, the strain generated along the carbon fibers dynamically changed, and the analysis results generally predicted the strain variation quite well. To apply this simulation technique to practical structures, a composite-aluminum hybrid wheel was analyzed and experimentally verified. 相似文献
16.
This paper is to develop a simple micromechanics-based model taking account of progressive damaging for carbon black (CB) filled rubbers. The present model constitutes of the instantaneous Young's modulus and Poisson's ratio characterizing rubber-like material, a double-inclusion (DI) configuration considering the absorption of rubber chains onto CB particles, and the incremental Mori-Tanaka formula to compute the effective stress–strain relations. The progressive damage in filled rubbers is described by the DI cracking, which is represented by the remaining load–carrying capacity. The present predictions are capable of embodying the well-known S-shaped response of filled rubbers, and also verified by the comparison with the experimental and analytical results. Moreover, strain localization effect is clearly demonstrated by finite element method (FEM) simulations, and reaches a decisive interpretation to the complicated synergic micro-mechanisms between hard fillers and soft phase in such flexible composites. 相似文献
17.
The use of acoustic emission (AE) for the detection of damage in carbon fibre composite pressure vessels was evaluated for constant and cyclic internal gas pressure loading conditions. AE was capable of monitoring the initiation and accumulation of damage events in a composite pressure vessel (CPVs), although it was not possible to reliably distinguish carbon fibre breakage from other microscopic damage events (e.g. matrix cracks, fibre/matrix interfacial cracks). AE tests performed on the carbon fibre laminate used as the skin of pressure vessels revealed that the development of damage is highly variable under constant pressure, with large differences in the rupture life and acoustic emission events at final failure. Numerical analysis of the skin laminate under constant tensile stress revealed that the high variability in the stress rupture life is due mainly to the stochastic behaviour of the carbon fibre rupture process. 相似文献
18.
Printed circuit boards (PCBs) assembled with ball grid array (BGA) microelectronics packages were tested in a double cantilever beam (DCB) configuration. The results were compared for a filled and an unfilled underfill epoxy adhesive as well as a cyanoacrylate adhesive. The original fillet, formed in the underfilling process, was modified to create fillets of different sizes. Regardless of the underfill thermal and mechanical properties as well as its curing profile, the crack initiation load and the failure mode were solely a function of the size of the underfill fillet, and the failure always initiated within the PCB. Moreover, the strength of the underfilled solder joints was increased significantly (approximately 100%) by the presence of a relatively large fillet. This effect of the underfill fillet on the crack path and the fracture load was then examined in terms of differences in the stress states using a finite element model. 相似文献
19.
20.
P.J. GrayC.T. McCarthy 《Composites Science and Technology》2011,71(12):1517-1527
This paper presents the development of a highly efficient user-defined finite element for modelling the bolt-load distribution in large-scale composite structures. The method is a combined analytical/numerical approach and is capable of representing the full non-linear load-displacement behaviour of bolted composite joints both up to, and including, joint failure. In the elastic range, the method is generic and is a numerical extension of a closed-form method capable of modelling the load distribution in single-column joints. A semi-empirical approach is used to model failure initiation and energy absorption in the joint and this has been successfully applied in models of single-bolt, single-lap joints. In terms of large-scale applications, the method is validated against an experimental study of complex load distributions in multi-row, multi-column joints. The method is robust, accurate and highly efficient, thus demonstrating its potential as a time/cost saving design tool for the aerospace industry and indeed other industries utilising bolted composite structures. 相似文献