首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Functional polypropylene (PP) nanocomposites were prepared by melt compounding with multiwalled carbon nanotubes (MWNT) as the electrically conductive component and barium titanate (BT) spherical nanoparticles as the ferroelectric component. To make PP electrically conductive, more than 3 wt.% MWNT is required. Surface modification of either MWNT or BT with titanate coupling agent further improves the electrical conductivity of the PP/MWNT/BT ternary nanocomposites. Interestingly, by modifying both MWNT and BT, 2 wt.% MWNT are sufficient to make the ternary nanocomposite electrically conductive. In addition, the incorporation of MWNT greatly increases the dielectric permittivity of PP/BT nanocomposites. However, to retain a low dielectric loss, the MWNT loading should be slightly less than the percolation threshold of the nanocomposites. The improved electrical conductivity and dielectric properties make the ternary nanocomposites attractive in practical applications.  相似文献   

2.
Polymer/carbon nanotubes nanocomposites were fabricated by an in situ polymerization process using multi-wall carbon nanotubes (MWNT) as filler in an epoxy polymer. Effects of curing process, mixing speed, mixing time, addition of ethanol, timing of hardener addition, etc., in the fabrication process on the electrical properties of nanocomposites have been investigated. In the fabrication process, the effective formation of macroscopic conducting network in matrix is most important to enhance the electrical properties of nanocomposites. It was found that the curing temperature and the mixing conditions are key factors in the fabrication process, which influence the formation of conducting network significantly. Therefore, careful design of these factors in the fabrication process is required to achieve high electrical performances of nanocomposites. The experimental percolation threshold of the resultant nanocomposites was around 0.1 wt%. Moreover, a statistical percolation model was built up to numerically investigate the percolation threshold. The experimental electrical conductivity increases from the percolation threshold following a percolation-like power law with the identified critical exponent t as 1.75.  相似文献   

3.
通过共溶剂法制备了由石墨(GN)和多壁碳纳米管(MWCNTs)掺杂的聚乳酸(PLA)纳米复合材料,借助扫描电镜等手段,研究了MWCNTs用量对复合材料微观结构、热稳定性、导热和导热性能及介电性能的影响。结果显示,MWC-NTs和GN在PLA基体中形成了稳定的导电和导热网络结构,从而导致复合材料具有较低的导电和导热逾渗阈值,其值约为MWCNTs/GN=0.5/1。MWCNTs和GN均匀分散和协同增强效应促使复合材料热稳定性、导热和导电性能明显提高。与纯PLA相比,填料在逾渗阈值附近的复合材料的初始分解温度提高了近16℃,导热系数提高了1倍,体积电阻降低了109数量级。  相似文献   

4.
Carbon nanotube polymer nanocomposites exhibit conductive behavior due to the formation of conductive nanotube networks inside the polymer. Their electrical resistance is known to vary with strain. Two mechanisms that affect the conductivity and piezoresistive response of CNT nanocomposites are investigated using models at two discrete material scales: (a) nanoscale models to analyze the electromechanical response of carbon nanotubes and (b) nanotube percolation models to investigate the composites electrical resistance at microscale. Numerical studies determine the impact of each mechanism on the macroscopic response of the nanocomposite. Results suggest that the variation of nanotube resistance with strain is the dominant mechanism.  相似文献   

5.
In this work, the influence of multi-walled carbon nanotubes (MWCNT) on electrical, thermal and mechanical properties of CNT reinforced isotactic polypropylene (iPP) nanocomposites is studied. The composites were obtained by diluting a masterbatch of 20 wt.% MWCNT with a low viscous iPP, using melt mixing. The morphology of the prepared samples was examined through SEM, Raman and XRD measurements. The effect of MWCNT addition on the thermal transitions of the iPP was investigated by differential scanning calorimetry (DSC) measurements. Significant changes are reported in the crystallization behavior of the matrix on addition of carbon nanotubes: increase of the degree of crystallinity, as well as appearance of a new crystallization peak (owing to trans-crystallinity). Dynamic mechanical analysis (DMA) studies revealed an enhancement of the storage modulus, in the glassy state, up to 86%. Furthermore, broadband dielectric relaxation spectroscopy (DRS) was employed to study the electrical and dielectric properties of the nanocomposites. The electrical percolation threshold was calculated 0.6–0.7 vol.% MWCNT from both dc conductivity and dielectric constant values. This value is lower than previous mentioned ones in literature in similar systems. In conclusion, this works provides a simple and quick way for the preparation of PP/MWCNT nanocomposites with low electrical percolation threshold and significantly enhanced mechanical properties.  相似文献   

6.
Electrically conductive and thermally stable polyamide 6 (PA 6) nanocomposites were prepared through one-step in situ polymerization of ε-caprolactam monomer in the presence of electrically insulating and thermally unstable graphene oxide (GO) nanosheets. These nanocomposites show a low percolation threshold of ∼0.41 vol.% and high electrical conductivity of ∼0.028 S/m with only ∼1.64 vol.% of GO. Thermogravimetric analysis and X-ray photoelectron spectroscopy results of GO before and after thermal treatment at the polymerization temperature indicate that GO was reduced in situ during the polymerization process. X-ray diffraction patterns and scanning electron microscopy observation confirm the exfoliation of the reduced graphene oxide (RGO) in the PA 6 matrix. The low percolation threshold and high electrical conductivity are attributed to the large aspect ratio, high specific surface area and uniform dispersion of the RGO nanosheets in the matrix. In addition, although GO has a poor thermal stability, its PA 6 nanocomposite is thermally stable with a satisfactory thermal stability similar to those of neat PA 6 and PA 6/graphene nanocomposite. Such a one-step in situ polymerization and thermal reduction method shows significant potential for the mass production of electrically conductive polymer/RGO nanocomposites.  相似文献   

7.
In this paper, electrical and mechanical properties of Poly (p-phenylene sulfide) (PPS)/multi-wall carbon nanotubes (MWNTs) nanocomposites were reported. The composites were obtained just by simply melt mixing PPS with raw MWNTs without any pre-treatment. The dispersion of MWNTs and interfacial interaction were investigated through SEM &TEM and Raman spectra. The rheological test and crystallization behavior were also investigated to study the effects of MWNTs concentration on the structure and chain mobility of the prepared composites. Though raw MWNTs without any pre-treatment were used, a good dispersion and interaction between PPS and MWNTs have been evidenced, resulting in a great improvement of electrical properties and mechanical properties of the composites. Raman spectra showed a remarkable decrease of G band intensity and a shift of D bond, demonstrating a strong filler–matrix interaction, which was considered as due to π–π stacking between PPS and MWNTs. The storage modulus (G′) versus frequency curve presented a plateau above the percolation threshold of about 2–3 wt% with the formation of an interconnected nanotube structure, indicative of ‘pseudo-solid-like’ behavior. Meanwhile, a conductive percolation threshold of 5 wt% was achieved and the conductivity of nanocomposites increased sharply by several orders of magnitude. The difference between electrical and rheological percolation threshold, and the effect of critical percolation on the chain mobility, especially on crystallization behavior of PPS, were discussed. In summary, our work provides a simple and fast way to prepare PPS/MWNTs nanocomposites with good dispersion and improved properties.  相似文献   

8.
Raman spectroscopy is used to access the dispersion state of DWNTs in a PEEK polymer matrix. The interaction of the outer tube with the matrix can be determined from the line shape of the Raman G band. This allows us to distinguish regions where the nanotubes are well dispersed and regions where the nanotubes are agglomerated. The percolation threshold of the electrical conductivity of the double wall carbon nanotubes (DWNTs)/PEEK nanocomposites is found to be at 0.2-0.3 wt%. We find a maximum electrical conductivity of 3 × 10−2 S cm−1 at 2 wt% loading. We detect nanotube weight concentrations as low as 0.16 wt% by Raman spectroscopy using a yellow excitation wavelength. We compare the Raman images with transmission electron microscopy images and electrical conductivity measurements. A statistical method is used to find a quantitative measure of the DWNTs dispersion in the polymer matrix from the Raman images.  相似文献   

9.
Superior electrical, thermal, and mechanical properties of carbon nanotubes (CNTs) have made them effective filler for multifunctional polymer nanocomposites (PNCs). In particular, electrically conductive PNCs filled with CNTs have been researched extensively. These studies aimed to increase the PNCs' electrical conductivity (σ) and to minimize the percolation thresholds (ϕc). In this work, we have developed an improved model to describe the CNT networks and thereby evaluate the PNCs' ϕc and σ. The new model accounts for the electrical conductance contributed by the continued CNT network across the boundary of adjacent representative volume elements. It more realistically represents the interconnectivity among CNTs and enhances the evaluation of the structure-to-property relationship of PNCs' σ.  相似文献   

10.
The electrical percolation behavior of multiwall carbon nanotubes epoxy composites produced using sonication as dispersion process is studied. The electrical properties of the cured composites are related to the different internal carbon nanotube networks induced by the processing parameters. A fine tuning of the electrical conductivity is obtained by dispersing the nanotubes in the matrix and subsequently inducing agglomeration by curing at different temperatures. Optical microscopy and scanning electron microscopy of the formed microstructures reveal a strict correlation between structural and electrical properties that suggests that agglomeration provides a higher electrical conductivity.  相似文献   

11.
Ultra-high molecular weight polyethylene (UHMWPE)-based conductive nanocomposites with reduced percolation and tunable piezoresistive behavior were prepared via solution mixing followed by compression molding using carbon nanotubes (CNT) and graphene nanoplatelets (GNP). The effect of varying wt% of GNP with fixed CNT content (0.1 wt%) on the mechanical, electrical, thermal and piezoresistive properties of UHMWPE nanocomposites was evaluated. The combination of CNT and GNP enhanced the dispersion in UHMWPE matrix and lowered the probability of CNT aggregation as GNP acted as a spacer to separate the entanglement of CNT with each other. This has allowed the formation of an effective conductive path between GNP and CNT in UHMWPE matrix. The thermal conductivity, degree of crystallinity and degradation temperature of the nanocomposites increased with increasing GNP content. The elastic modulus and yield strength of the nanocomposites were improved by 37% and 33%, respectively, for 0.1/0.3 wt% of CNT/GNP compared to neat UHMWPE. The electrical conductivity was measured using four-probe method, and the lowest electrical percolation threshold was achieved at 0.1/0.1 wt% of CNT/GNP forming a nearly two-dimensional conductive network (critical value, t = 1.20). Such improvements in mechanical and electrical properties are attributed to the synergistic effect of the two-dimensional GNP and one-dimensional CNT which limits aggregation of CNTs enabling a more efficient conductive network at low wt% of fillers. These hybrid nanocomposites exhibited strong piezoresistive response with sensitivity factor of 6.2, 15.93 and 557.44 in the linear elastic, inelastic I and inelastic II regimes, respectively, for 0.1/0.5 wt% of CNT/GNP. This study demonstrates the fabrication method and the self-sensing performance of CNT/GNP/UHMWPE nanocomposites with improved properties useful for orthopedic implants.  相似文献   

12.
A comparative study of the use of multiwall carbon nanotubes and two different carbon nanofibers in an unsaturated polyester, forming nanocomposites, and their effect on dispersion and the electrical and mechanical properties is presented. The nanocomposites were prepared by shear mixing without the use of any solvent. The degree of dispersion was evaluated from both a micro and nanoscale point of view in order to better understand the role of the filaments on the resulting electrical and mechanical properties. The results obtained show that the dispersion depends, in addition to the high shear conditions, on the structure and nature of the nanofilaments. The best dispersion attained, showing the lowest percolation threshold, did not correspond to the most energetic mixing conditions. However, it was imperative to effectively disperse the nanofilaments into the matrix in order not to deteriorate the mechanical properties of the composites. Moreover, it seemed that lower nanofilament concentrations allowed for better dispersion, and as a result, higher mechanical performance.  相似文献   

13.
The aim of this study is to investigate temperature dependence of electrical conductivity of carbon nanotube (CNT)/polyester nanocomposites from room temperature to 77 K using four-point probe test method. To produce nanocomposites, various types and amounts of CNTs (0.1, 0.3 and 0.5 wt.%) were dispersed via 3-roll mill technique within a specially formulized resin blend of thermoset polyesters. CNTs used in the study include multi walled carbon nanotubes (MWCNT) and double-walled carbon nanotubes (DWCNT) with and without amine functional groups (–NH2). It was observed that the incorporation of carbon nanotubes into resin blend yields electrically percolating networks and electrical conductivity of the resulting nanocomposites increases with increasing amount of nanotubes. However, nanocomposites containing amino functionalized carbon nanotubes exhibit relatively lower electrical conductivity compared to those with non-functionalized carbon nanotubes. To get better interpretation of the mechanism leading to conductive network via CNTs with and without amine functional groups, the experimental results were fitted to fluctuation-induced tunneling through the barriers between the metallic regions model. It was found that the results are in good agreement with prediction of proposed model.  相似文献   

14.
Melt processing of thermoplastic-based nanocomposites is the favoured route to produce electrically conductive or electrostatic dissipative polymer composites containing carbon nanotubes (CNT). As these properties are desired at low filler fractions, a high degree of dispersion is required in order to benefit from the intrinsic CNT properties. This study discusses the influence of screw configuration, rotation speed, and throughput on the residence time and specific mechanical energy (SME) and the resulting macroscopic CNT dispersion in polycaprolactone (PCL) based masterbatches containing 7.5 wt.% multi-walled carbon nanotubes (MWNT) using an intermeshing co-rotating twin-screw extruder Berstorff ZE25.  相似文献   

15.
Epoxy nanocomposites including multi-wall carbon nanotubes (MWCNT) and carbon black (CB) were produced and investigated by means of electrical conductivity measurements and microscopical analysis. Varying the weight fraction of the nanoparticles, electrical percolation behaviour was studied. Due to synergistic effects in network formation and in charge transport the inclusion of both MWCNT and CB in the epoxy matrix leads to an identical electrical behaviour of this ternary nanocomposite system compared to the binary MWCNT-epoxy system. For both types of nanocomposites an electrical percolation threshold of around 0.025 wt% and 0.03 wt% was observed. Conversely, the binary CB nanocomposites exhibit a three-times higher percolation threshold of about 0.085 wt%. The difference between the binary MWCNT-epoxy and the ternary CB/MWCNT-epoxy in electrical conductivity at high filler concentrations (e.g. 0.5 wt%) turns out to be less than expected. Thus, a considerable amount of MWCNTs can be replaced by CB without changing the electrical properties.  相似文献   

16.
In this study, poly(p-phenylene sulfide) based nanocomposites containing multi-walled carbon nanotubes (MWNTs) were produced by dilution of a 15 wt.% MWNT/PPS masterbatch via twin screw extrusion process. The electrical conductivities of the nanocomposites were measured and percolation threshold was observed below 0.77 vol.% MWNTs. The state of dispersion and distribution quality of MWNTs was analyzed on macro- and nanoscale through transmission light and scanning electron microscopy (SEM). A good deagglomeration of primary macroagglomerates and a homogenous MWNT distribution on nanoscale was found. The dependence of conductivity on MWNT concentration was estimated using statistical percolation theory which matches the experimental data quite well. A new empirical equation was set up to fit the electrical conductivity using quantitative values of visible percolating MWNTs which were detected by charge contrast imaging in SEM.  相似文献   

17.
Carbon nanotube reinforced polymeric composites can have favourable electrical properties, which make them useful for applications such as flat-panel displays and photovoltaic devices. However, using aqueous dispersions to fabricate composites with specific physical properties requires that the processing of the nanotube dispersion be understood and controlled while in the liquid phase. Here, using a combination of experiment and theory, we study the electrical percolation of carbon nanotubes introduced into a polymer matrix, and show that the percolation threshold can be substantially lowered by adding small quantities of a conductive polymer latex. Mixing colloidal particles of different sizes and shapes (in this case, spherical latex particles and rod-like nanotubes) introduces competing length scales that can strongly influence the formation of the system-spanning networks that are needed to produce electrically conductive composites. Interplay between the different species in the dispersions leads to synergetic or antagonistic percolation, depending on the ease of charge transport between the various conductive components.  相似文献   

18.
In the present study, we have fabricated a series of high temperature vulcanized silicone rubber (HTVSR)/carbon nanotubes (CNTs) nanocomposites with different CNT contents. The CNTs were pretreated by the chitosan salt before being incorporated into the HTVSR. The nanocomposites were then characterized in terms of morphological, thermal, mechanical and electrical properties. It was found that the chitosan salt pretreated CNTs dispersed uniformly within the HTVSR matrix, improving the thermal and mechanical properties of the HTVSR. The nanocomposites could remain conductive without losing inherent properties after 100 times of repeated stretching/release cycles by 100%, 200%, and even 300%. Moreover, the nanocomposites had good response to the compressed pressures. The results obtained from this study indicate that the fabricated nanocomposites are potential to be used in many electrical fields such as the conductive elastomer or the pressure sensor.  相似文献   

19.
The electrical percolation behaviour of five different kinds of carbon nanotubes (CNTs) synthesised by two CVD techniques was investigated on melt mixed composites based on an insulating polyamide 6.6 matrix. The electrical percolation behaviour was found to be strongly dependent on the properties of CNTs which varied with the synthesis conditions. The lowest electrical percolation threshold (0.04 wt.%) was determined for as grown multi-walled carbon nanotubes without any purification or chemical treatment. Such carbon nanotubes were synthesised by the aerosol method using acetonitrile as ferrocene containing solvent and show relatively low oxygen content near the surface, high aspect ratio, and good dispersability. Similar properties could be found for nanotubes produced by the aerosol method using cyclohexane, whereas CNTs produced by the fixed bed method using different iron contents in the catalyst material showed much higher electrical percolation thresholds between 0.35 and 1.02 wt.%.  相似文献   

20.
In this paper, the electrical conductivity and mechanical properties such as elastic modulus of multiwalled carbon nanotubes (MWCNTs) reinforced polypropylene (PP) nanocomposites were investigated both experimentally and theoretically. MWCNT-PP nanocomposites samples were produced using injection mold at different injection velocities. The range of the CNT fillers is from 0 up to 12?wt%. The influence of the injection velocity and the volume fraction of CNTs on both electrical conductivity and mechanical properties of the nanocomposites were studied. The injection speed showed some effect on the electrical conductivity, but no significant influence on the mechanical properties such as elastic modulus and stress-strain relations of the composites under tensile loading. Parallel to the experimental investigation, for electrical conductivity, a percolation theory was applied to study the electrical conductivity of the nanocomposite system in terms of content of nanotubes. Both Kirkpatrick (Rev Mod Phys 45:574?C588, 1973) and McLachlan et?al. (J Polym Sci B 43:3273?C3287, 2005) models were used to determine the transition from low conductivity to high conductivity in which designates as percolation threshold. It was found that the percolation threshold of CNT/PP composites is close to 3.8?wt%. For mechanical properties of the system, several micromechanical models were applied to elucidate the elastic properties of the nanocomposites. The results indicate that the interphase between the CNT and the polymers plays an important role in determining the elastic modulus of the system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号