首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The versatile electrospinning technique was used to successfully align and disperse multiwalled carbon nanotubes (MWCNT) in nylon 6,6 matrix to obtain composite fibers. The morphology of the composite fibers and the dispersion of the CNTs within the fibers were analyzed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM), respectively. TEM analysis revealed that the CNTs were well-dispersed, separated and aligned along the fiber axis. The thermal and mechanical properties of the composite fibers were characterized as a function of weight fraction of the CNTs. Incorporation of the CNTs in the fibers resulted in an increase in glass-transition temperature (Tg) by ∼7 °C, indicating that the addition of CNTs has restricted the mobility of the polymer chains and provided confinement to neighboring molecular chains. Tensile and nanoindentation experiments were performed to investigate the mechanical deformation behavior of the composite fibers. The results suggested that incorporation of high strength and high aspect ratio CNTs into the fiber matrix enhanced significantly the stiffness and strength of nylon 6,6 fibers. An understanding of the structure–property relationships can provide fruitful insights to develop electrospun fibers with superior properties for miniaturized and load-bearing applications.  相似文献   

2.
In recent years, carbon fiber reinforced polymer (CFRP) composites have found increasing applications in marine and offshore area, where the CFRP components are subjected to a persistent attack of moisture. The performance degradation of composites under those critical service conditions becomes a key issue. In this work, silane coating and multiwalled carbon nanotubes were applied on carbon fibers to enhance the fiber/matrix interfacial bonding strength. The long-term effects of moisture on the interfacial shear strength (IFSS) of the composites in underwater environments, such as de-ionized water and simulated seawater, have been studied using single fiber microbond method. The silane coating and carbon nanotube-modified silane coating are found to contribute 14.5% and 26.3% increase in IFSS of the CFRP in dry air, and well maintain this improvement during a 120-day immersion test in de-ionized water and simulated seawater.  相似文献   

3.
Carbon nanotubes (CNTs) were grown from the surface of glass fibers by chemical vapor deposition, and these hybrid fibers were individually dispersed in an epoxy matrix to investigate the local composite structure and properties near the fiber surface. High-resolution transmission electron microscopy revealed the influence of infiltration and curing of a liquid epoxy precursor on the morphology of the CNT “forest” region, or region of high CNT density near the fiber surface. Subsequent image analysis highlighted the importance of spatially dependent volume fractions of CNTs in the matrix as a function of distance from the fiber surface, and nanoindentation was used to probe local mechanical properties in the CNT forest region, showing strong correlations between local stiffness and volume fraction. This work represents the first in situ measurements of local mechanical properties of the nano-structured matrix region in hybrid fiber-reinforced composites, providing a means of quantifying the reinforcement provided by the grafted nanofillers.  相似文献   

4.
Growing carbon nanotubes (CNTs) on the surface of fibers has the potential to modify fiber–matrix interfacial adhesion, enhance the composite delamination resistance, and possibly improve its toughness and any matrix-dominated elastic property as well. In the present work aligned CNTs were grown upon ceramic fibers (silica and alumina) by chemical vapor deposition (CVD) at temperatures of 650 °C and 750 °C. Continuously-monitored single fiber composite (SFC) fragmentation tests were performed on pristine as well as on CNT-grown fibers embedded in epoxy. The critical fragment length, fiber tensile strength at critical length, and interfacial shear strength were evaluated. Significant increases (up to 50%) are observed in the fiber tensile strength and in the interfacial adhesion (which was sometimes doubled) with all fiber types upon which CNTs are CVD-grown at 750 °C. We discuss the likely sources of these improvements as well as their implications.  相似文献   

5.
采用扫描电镜(SEM)、原子力显微镜(AFM)、X射线光电子能谱(XPS)等测试方法表征了上浆/未上浆国产T700级(MT700)碳纤维的表面特性,并通过单丝断裂实验测试了单丝复合体系微观界面剪切强度(IFSS),在此基础上研究了碳纤维表面特性对单丝复合体系微观界面性能及其耐湿热性能的影响.研究表明:MT700碳纤维表面上浆剂改善了纤维/基体微观界面强度及其耐湿热性能;湿热环境对复合材料的微观界面性能影响显著,尤其是造成纤维/基体间的化学键合作用破坏,去湿后部分界面性能可恢复.  相似文献   

6.
In this study, the influence of silane coupling agents on interfacial adhesion in glass fiber reinforced polymers from the ring-opening metathesis polymerization (ROMP) of a linseed oil-based monomer and dicyclopentadiene is investigated experimentally. Two types of silane coupling agents, norbornenylethyldimethylchlorosilane (MCS) and norbornenylethyltrichlorosilane (TCS), are examined. Interfacial shear strength (IFSS) is evaluated by the microbond technique. The IFSS increases by about 150% for the MCS-treated fibers and by about 50% for the TCS-treated fibers compared to untreated fibers. Dynamic mechanical analysis of composite panels made with untreated and silane-treated fibers reveals that MCS-treated fiber composites have the highest storage modulus and glass transition temperature, indicating strong interfacial interactions at the glass/matrix interface. Short beam shear tests and scanning electron microscopy of fracture surfaces also confirm that MCS is more effective than TCS at improving interfacial adhesion.  相似文献   

7.
This paper deals with the investigation of the effect of carbon nanotube (CNT) waviness on the effective coefficient of thermal expansion (CTE) of a novel continuous fuzzy fiber reinforced composite (FFRC). This novel FFRC is composed of carbon fibers, sinusoidally wavy CNTs and epoxy matrix. The sinusoidally wavy CNTs are radially grown on the circumferential surfaces of the carbon fibers. Analytical micromechanics model based on the method of cells (MOC) approach is derived to investigate the influence of the waviness of CNTs on the effective CTEs of the FFRC. The present study reveals that if the amplitudes of the radially grown sinusoidally wavy CNTs are parallel to the axis of the carbon fiber then the thermoelastic properties of the FFRC are significantly improved over those of the FFRC being composed of straight CNTs.  相似文献   

8.
Three-dimensional reinforcement of woven advanced polymer–matrix composites using aligned carbon nanotubes (CNTs) is explored experimentally and theoretically. Radially-aligned CNTs grown in situ on the surface of fibers in a woven cloth provide significant three-dimensional reinforcement, as measured by Mode I interlaminar fracture testing and tension-bearing experiments. Aligned CNTs bridge the ply interfaces giving enhancement in both initiation and steady-state toughness, improving the already tough system by 76% in steady state (more than 1.5 kJ/m2 increase). CNT pull-out on the crack faces is the observed toughening mechanism, and an analytical model is correlated to the experimental fracture data. In the plane of the laminate, aligned CNTs enhance the tension-bearing response with increases of: 19% in bearing stiffness, 9% in critical strength, and 5% in ultimate strength accompanied by a clear change in failure mode from shear-out failure (matrix dominated) without CNTs to tensile fracture (fiber dominated) with CNTs.  相似文献   

9.
The main aims of this work were to study the effect of surface modifications on sisal fiber properties as well as on fiber/poly (lactic acid) (PLA) interface adhesion. For this purpose, alkali, silane and combination of both treatments were applied to sisal fiber. The effects of treatments on fiber thermal stability, fiber wettability, morphology, tensile properties and on fiber/PLA interfacial shear strength (IFSS) were studied. After treatments IFSS values improved at least 120%, however, tensile strength of sisal fibers decreased. Alkali treatment removed some non-cellulosic components (hemicelluloses, lignin) as confirmed by Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). The removal of non-cellulosic materials led to fibrillated and rough morphology as observed by optical microscopy (OM). FTIR spectrum of silane treated fibers showed a band related to silane amino group and contact angle measurements confirmed that fibers became more hydrophobic. All treatments used improved fiber/PLA adhesion.  相似文献   

10.
Nano-SiO2 particles were used to modify epoxy emulsion sizing of carbon fibers to improve the interfacial properties of carbon fibers reinforced epoxy composites. The mechanical interfacial strength between fibers and matrix was investigated by the single fiber fragmentation test and the 3-point short beam shear test, respectively. Dynamic contact angle analysis (DCAA), X-ray photoelectron spectrometry (XPS) and atomic force microscopy (AFM) were performed on the carbon fibers with unmodified sizing and nano-SiO2 modified sizing. The results indicated that modified sizing with nano-SiO2 slightly increased the surface energy, the hydroxyl functional group and the surface roughness of carbon fibers compared to unmodified sizing, so that the interfacial shear strength (IFSS) of the single fiber composites and the interlaminar shear strength (ILSS) of composites were enhanced. SEM images of fracture sections of composites proved powerfully that the interfacial adhesion between fibers and matrix was improved after nano-SiO2 modified emulsion sizing treatment.  相似文献   

11.
Amine-functionalized carbon nanofibers (A-CNFs) were deposited on the surface of individual sized carbon fibers using electrophoretic deposition (EPD), and the average interfacial shear strength (IFSS) was determined using the single fiber fragmentation test in conjunction with Weibull analysis. The IFSS decreased by 25% for fibers acting as the negative electrode in water without CNFs, and the impact of agglomerates on IFSS estimation is discussed. Further, a 187% IFSS increase was achieved for fibers undergoing a two-stage A-CNF EPD approach.  相似文献   

12.
Carbon fiber felt with carbon nanotubes (CNTs) were prepared by immersing three-dimensional (3D) felt into CNT aqueous solution (with dispersant) followed by removing water with different drying methods. Epoxy resin was then introduced into the felt to obtain 3D fiber felt/CNTs modified epoxy composites. This paper highlights the effect of drying method on macro-morphologies of the felt, morphological dispersion of CNTs and some relevant properties of the composites, including electrical conductivity and flexural performance. The results demonstrate that compared to the commonly used heat drying method, freeze drying technique possesses obvious advantages for the fabrication of fiber felt/CNT modified epoxy composites.  相似文献   

13.
采用单丝复合体系多次断裂法,通过对纤维单丝断点数的统计及其断点形貌的分析,考察了PBO纤维、芳纶Twaron纤维、超高分子量聚乙烯纤维(UHMWPE)3种高性能有机纤维与韧性环氧基体的界面剪切强度;并对比考察了界面剪切强度与对应复合材料单向板层间剪切强度之间的关系;结合XPS、SEM等手段分析了有机纤维表面物理化学特性对界面剪切强度的影响。结果表明,Twaron/环氧的界面剪切强度高于PBO/环氧,UHMWPE/环氧的界面粘结弱,该方法不能测试;上述体系界面剪切强度与对应的复合材料单向板层间剪切强度变化趋势是一致的;表面化学活性高的纤维对应的界面剪切强度高。  相似文献   

14.
Short fiber reinforced composites inherently have fiber length distribution (FLD) and fiber orientation distribution (FOD), which are important factors in determining mechanical properties of the composites. Since the internal structure has a direct effect on the mechanical properties of the composites, a Micro-CT was used to observe the three dimensional structure of fibers in the composites and to acquire FLD and FOD. It was successful to investigate FLD, FOD, and fiber orientation states and to predict the elastic modulus of the hybrid system. Since hybrid composites used in this study consist of three phases of particles, glass fibers, and matrix, theoretical hybrid modeling is required to consider reinforcing effects of both particles and glass fibers. Interaction between the particles and matrix was considered by using a perturbed stress–strain theory, the Tandon–Weng model. In addition, the laminating analogy approach (LAA) was used to predict the overall elastic modulus of the composite. Theoretical prediction of hybrid moduli indicated that there was a possibility of poor adhesion between glass fibers and matrix. The poor interfacial adhesion was confirmed by morphological experiments. This theoretical and experimental platform is expected to provide more insightful understanding on any kinds of multiphased hybrid composites.  相似文献   

15.
Ferroelectric nanostructures have broad applications in nanoscale electronic devices, sensors and actuators. In this study, a two-step electrospinning process was used to fabricate barium titanate (BaTiO3)/polyvinylidene fluoride (PVDF) composite fibers. Microstructure examination showed that BaTiO3 fibers were well-dispersed within the PVDF fiber matrix and aligned along the fiber axis. X-ray diffraction (XRD) study revealed that crystalline phases corresponding to both PVDF and BaTiO3 were found. The domain switching and associated ferro-/piezo-electric properties of the BaTiO3-PVDF fibers were characterized. Polarization-electric field hysteresis loops obtained using piezoresponse force microscopy (PFM) confirmed the polar domain switching behavior of the fibers. Distinct strain-electric field hysteresis loops were also recorded. Hence, the fibers exhibited well-defined piezoelectric and ferroelectric properties. The results show the potential of these nanostructured composite fibers for applications in miniaturized electronic devices and sensors.  相似文献   

16.
This work is aimed to study the mechanical properties of basalt fibers, and their adhesion to polypropylene (PP) matrices. Single filament tensile tests were used to calculate the strength of different types of fibers, characterized by different providers and surface treatment. Single fiber fragmentation tests (SFFT) were used to calculate the critical length of the fibers, in a homopolymer PP matrix and in a maleic anhydride modified PP matrix. It was shown that the tensile strength of the fibers is not significantly influenced by the origin or the surface treatment. Only fibers without any sizing show very reduced mechanical properties. On the other hand, the tensile strength was shown to be severely dependent on the filament length. Weibull theory was used in order to calculate the fitting parameters σ0 and β, which were necessary in order to extrapolate the tensile strength to the critical length determined by SFFT. This allowed calculating the adhesion properties of the basalt fibers. It was shown that fiber–matrix adhesion is dependent on both the presence of sizing on the fiber surface, as well as on the modification of the matrix.  相似文献   

17.
In this study carbon nanotubes (CNTs) were grown on carbon fibers to enhance the in-plane and out-of-plane properties of fiber reinforced polymer composites (FRPs). A relatively low temperature synthesis technique was utilized to directly grow CNTs over the carbon fibers. Several composites based on carbon fibers with different surface treatments (e.g. growing CNTs with different lengths and distribution patterns and coating the fibers with a thermal barrier coating (TBC) layer) were fabricated and characterized via on- and off-axis tensile tests. The on-axis tensile strength and ductility of the hybrid FRPs were improved by 11% and 35%, respectively, due to the presence of the TBC and the surface grown CNTs. This configuration also exhibited 16% improvement on the off-axis stiffness. Results suggest that certain CNT growth patterns and lengths are more pertinent than the other surface treatments to achieve superior mechanical properties.  相似文献   

18.
采用电沉积法与化学气相渗透(CVI)法将碳纳米管(CNTs)分别引入到碳纤维表面和SiC基体中,制得了不同物相电沉积CNTs的C/SiC复合材料(CNTs-C)/SiC和C/(CNTs-SiC)。研究了CNTs沉积物相对C/SiC复合材料力学性能的影响,分析了不同CNTs沉积物相的C/SiC复合材料的拉伸强度及断裂机制。结果表明:相较于未加CNTs的C/SiC复合材料,CNTs沉积到碳纤维表面的(CNTs-C)/SiC复合材料的拉伸强度提高了67.3%,断裂功提高了107.2%;而将CNTs引入到SiC基体中的C/(CNTs-SiC)复合材料的断裂功有所降低,拉伸强度也仅提高了6.9%,CNTs没有表现出明显的增强增韧效果;C/(CNTs-SiC)复合材料与传统的C/SiC复合材料有相似的断裂形貌特征,断裂拔出机制类似,主要为纤维增强增韧,CNTs的作用不明显。  相似文献   

19.
A new hierarchical reinforcement developed by coating biomimic polydopamine (PDA) on the surface of poly(p-phenylene benzobisoxazole) (PBO) fibers, which served as a platform for the graphene oxide (GO) grafting, using branched polyethyleneimine (b-PEI) as a bridging agent. The surface morphologies and chemical structures of PBO fibers were characterized for confirming the formation of covalent bond between GO and PBO fibers. The surface roughness (Ra) and wettability of the obtained fibers, denoted as PBO@PDA-PEI-GO, were obviously increased in comparison with those of untreated one. The reinforcement offered a 68.8% enhancement in the interfacial shear strength (IFSS) without degrading the base fiber. The PDA layer on the PBO fiber surface led to improved UV resistance. The hydrothermal aging resistance of PBO/epoxy composite was also greatly improved. This biomimic surface modification approach is facile to prepare, highly efficient to enhance interface, adaptable to all high-performance fibers, and meaningful in multifunctional applications.  相似文献   

20.
In carbon fiber reinforced polymer composites the onset of damage occurs at the fiber/matrix interface, where stress concentrations are the highest due to the property mismatch of the two materials. This article reports results of a modelling study indicating that carbon nanotubes (CNTs) grown on fibers are effective in suppressing stress concentrations at the fiber/matrix interface. In the case of high density CNT forests, they can even fundamentally change a profile of the interfacial stress. The study is performed using a novel two-scale finite element model of a nano-engineered composite based on the embedded regions technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号