首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Preforms containing 0, 5, 10, 15 and 20 wt.% carbon nanofibers (CNFs) were fabricated by spreading layers of carbon cloth, and infiltrated using the electrified preform heating chemical vapor infiltration method (ECVI) under atmospheric pressure. Initial thermal gradients were determined. Resistivity and density evolutions with infiltration time have been recorded. Scanning electron microscopy, polarized light micrograph and X-ray diffraction technique were used to analyze the experiment results. The results showed that the infiltration rate increased with the rising of CNF content, and after 120 h of infiltration, the density was the highest when the CNF content was 5 wt.%, but the composite could not be densified efficiently as the CNF content ranged from 10 wt.% to 20 wt.%. CNF-reinforced C/C composites have enhanced thermal conductivity, the values at 5 wt.% were increased by nearly 5.5-24.1% in the X-Y direction and 153.8-251.3% in the Z direction compared to those with no CNFs. When the additive content was increased to 20 wt.%, due to the holes and cavities in the CNF web and between carbon cloth and matrix, the thermal conductivities in the X-Y and Z directions decreased from their maximum values at 5 wt.%.  相似文献   

2.
Diamond-Cu composites from the direct combination of diamond and Cu show low thermal conductivities due to weak interface and high thermal resistance as a result of chemical incompatibility. In this paper, a new method is proposed to strengthen interfacial binding between diamond and Cu by coating strong carbide-forming elements, e.g., Ti or Cr on the surface of the diamond through vacuum micro-deposition. Interfacial thermal resistance of diamond-Cu composites is greatly decreased when diamond particles are coated by a Cr or Ti layer of a certain thickness before combining with Cu. Thermal conductivity is also increased several times. Cr coating can reduce more effectively interface thermal resistance between diamond and Cu than Ti coating. Moreover, it has a smaller negative impact on the thermal conductivity of the Cu matrix, resulting in higher thermal conductivity of Cr-coated diamond-Cu composites. Through the vacuum micro-deposition technology, Cr on the diamond particle surface is present in the form Cr7C3 near diamond and a pure Cr outer layer at 2:1. The optimum thickness is within 0.6-0.9 μm; at this depth, the thermal conductivities of 70 vol% diamond-Cu composites can be increased four times and reach as high as 657 W/m K. In this work, an original theoretical model is proposed to estimate the thermal conductivities of composite materials with an interlayer of a certain thickness. The predicted values from this model are in good agreement with the experimental values.  相似文献   

3.
Copper/carbon nanofibre composites containing titanium varying from 0.3 wt.% to 5 wt.% were made, and their thermal conductivities measured using the laser flash technique. The measured thermal conductivities were much lower than predicted. The difference between measured and predicted values has often been attributed to limited heat flow across the interface. A study has been made of the composite microstructure using X-ray diffraction, transmission electron microscopy and Raman spectroscopy. It is shown in these materials, that the low composite thermal conductivity arises primarily because the highly graphitic carbon nanofibre structure transforms into amorphous carbon during the fabrication process.  相似文献   

4.
We report the enchanced in situ performances of tensile strength and thermal conductivity at elevated temperatures of the PCS-free SiC/SiC composite with a high fiber volume fraction above 50% fabricated by NITE process for nuclear applications. The composite was fabricated by the optimized combination of the fiber coating, the matrix slurry and the pressure-sintering conditions, based on our previous composites’ study history. The composite showed the excellent tensile strength up to 1500 °C, that it retained approximately 88% of the room-temperature strength. Also, the thermal conductivity of the composites represented over 20 W/m K up to 1500 °C, which was enough high to take the advantage of the assumed design value for nuclear applications. Microstructural observation indicated that the excellent high-temperature performances regarding tensile strength and thermal conductivity up to 1500 °C were the contribution to the high densification and crystalline structure in matrix.  相似文献   

5.
Carbon nanofibers dispersed β-SiC (CNFs/SiC) nanocomposites were prepared by hot-pressing via a transient eutectic phase route at 1900 °C for 1 h under 20 MPa in Ar. The effects of additional CNFs content between 1 and 10 wt.% were investigated, based on densification, microstructure, thermal and mechanical properties. The CNFs/SiC nanocomposites by the CNFs contents below 5 wt.% exhibited excellent relative densities over 98% with well dispersed CNFs. However, the CNFs/SiC nanocomposites containing the CNFs of 10 wt.% possessed a relative density of 92%, accompanying CNFs agglomerates and many pores located inside the agglomerates. The three point bending strength gradually decreased with the increase of CNFs content, but the indentation fracture toughness increased to 5.7 MPa m1/2 by the CNFs content of 5 wt.%. The thermal conductivity was enchanced with the increase of CNFs content and represented a maximum value of 80 W/mK at the CNFs content of 5 wt.%.  相似文献   

6.
Thermal conductivity trends in a “chameleon coating” thin film were characterized with a time-domain thermoreflectance (TDTR) technique. A yttria-stabilized zirconia (YSZ)-based nanocomposite material containing ∼21 vol.% silver (Ag) was employed for this study. The thermal conductivity (k) of the as-deposited composite film was measured with TDTR and found to have a value of 7.4 ± 1.4 W m−1 K−1. The film was then annealed at 500 °C for 1 h to stimulate Ag flow from within the composite to the surface via diffusion. The Ag that coalesced on the surface during annealing was removed to expose the underlying porous YSZ matrix, and the sample was reexamined with the TDTR technique. The thermal conductivity of the porous nanocomposite YSZ material was then measured to be 1.6 ± 0.2 W m−1 K−1, which is significantly lower than a fully dense control sample of pure nanocrystalline YSZ (2.0 ± 0.1 W m−1 K−1). The annealed film displayed a 20% reduction in thermal conductivity as compared to the control sample and a 4–5-fold reduction in thermal conductivity as compared to the as-deposited material. The experiments demonstrate temperature triggering of a composite material, resulting in self-modifying thermal conductivity and diffusion-controlled porosity. These aspects can be used to enhance or restrict thermal transport (i.e., a thermal switch). The applicability of the TDTR technique to measurements of thin, nanoporous film materials is also demonstrated.  相似文献   

7.
Aluminum oxide and aluminum nitride with different sizes were used alone or in combination to prepare thermally conductive polymer composites. The composites were categorized into two systems, one including composites filled with large-sized aluminum nitride and small-sized aluminum oxide particles, and the other including composites filled with large-sized aluminum oxide and small-sized aluminum nitride. The use of these hybrid fillers was found to be effective for increasing the thermal conductivity of the composite, which was probably due to the enhanced connectivity offered by the structuring filler. At a total filler content of 58.4 vol.%, the maximum values of both thermal conductivities in the two systems were 3.402 W/mK and 2.842 W/mK, respectively, when the volume ratio of large particles to small particles was 7:3. This result was represented when the composite was filled with the maximum packing density and the minimum surface area at the same volume content. As such, the proposed thermal model predicted thermal conductivity in good agreement with experimental values.  相似文献   

8.
The effective thermal conductivity of silver-coated glass spheres dispersed in an ethylene vinyl acetate matrix was investigated numerically as a function of filler concentration. The finite-element method was carried out for modeling the thermal heat transport and to calculate the effective thermal conductivity of the composite for three elementary cells; simple cubic (SC), body-centered cubic (BCC), and face-centered cubic (FCC). The effect of the inclusion/matrix thermal contact resistance and the ratio of thermal conductivities of the filler-to-matrix material are also taken into account. The numerical results are compared with previously published experimental data and some theoretical models. The calculated values of the thermal conductivity of the SC model are in good agreement with the measured results for all the filler volume fractions. Numerical results for FCC and BCC models were found to be in good agreement with analytical models. The results show that the filler/matrix contact resistance has an important effect on the effective thermal conductivity.  相似文献   

9.
The thermal conductivities of cementitious nanocomposites reinforced by wavy carbon nanotubes (CNTs) are determined by the effective medium (EM) micromechanics-based method. The nanocomposite is composed of sinusoidally wavy CNTs as reinforcement and cement paste as matrix. The interfacial region between the CNTs and cementitious material is considered in the analysis. The effects of volume fraction and waviness parameters of CNTs, interfacial thermal resistance, type of CNTs placement within the matrix including aligned or randomly oriented CNTs, cement paste properties on the thermal conductivity coefficients of the nanocomposite are studied. The estimated values of the model are in very good agreement with available experimental data. Two parameters of CNT waviness and interfacial region contributions should be included in the modeling to predict realistic results for both aligned and randomly oriented CNT-reinforced nanocomposites. The results reveal that thermal conductivities K22 (transverse in-plane thermal conductivity) and K33 (longitudinal in-plane thermal conductivity) of the nanocomposites are remarkably dependent on the CNT waviness. Also, it is found that the CNT waviness moderately affects the thermal conductivity of a cementitious nanocomposite containing randomly oriented CNTs. However, the non-straight shape of CNTs does not influence the value of thermal conductivity K11 (transverse out of plane thermal conductivity). The achieved results can be useful to guide the design of cementitious nanocomposites with optimal thermal conductivity properties.  相似文献   

10.
Carbon materials, such as graphite oxides, carbon nanotubes and graphenes, have exceptional thermal conductivity, which render them excellent candidates as fillers in advanced thermal interface materials for high density electronics. In this paper, these carbon materials were functionalized with 4,4′-diaminodiphenyl sulphone (DDS), to enhance the bonding between the carbon materials and the resin matrix. Their visibly different properties were investigated. It seems that DDS-functionalization can obviously improve the interfacial heat transfer between the carbon materials and the epoxy matrix. The thermal conductivity enhancement of D-Graphene composites (0.493 W/m K) was about 30% higher than that of D-MWNTs composites (0.387 W/m K) at 0.5 vol.% loading. The different effects among EGO, D-EGO, MWNTs, D-MWNTs and D-Graphene in polymer composites were also discussed. It was demonstrated that DDS-functionalized carbon materials had an obvious effect on the thermal performances of composite materials and were more effective in thermal conductivity enhancement.  相似文献   

11.
Carbon nanotubes (CNTs) have high strength and modulus, large aspect ratio, and good electrical and thermal conductivities, which make them attractive for fabricating composite. The poly(biphenyl dianhydride-p-phenylenediamine) (BPDA/PDA) polyimide has good mechanical and thermal performances and is herein used as matrix in unidirectional carbon nanotube composites for the first time. The strength and modulus of the composite increase by 2.73 and 12 times over pure BPDA–PDA polyimide, while its electrical conductivity reaches to 183 S/cm, which is 1018 times over pure polyimide. The composite has excellent high temperature resistance, and its thermal conductivity is beyond what has been achieved in previous studies. The improved properties of the composites are due to the long CNT length, high level of CNT alignment, high CNT volume fraction and good CNT dispersion in polyimide matrix. The composite is promising for applications that require high strength, lightweight, or high electrical and thermal conductivities.  相似文献   

12.
La and Ca co-doped ceria-based electrolyte materials for IT-SOFCs   总被引:2,自引:0,他引:2  
Co-doped ceria-based electrolytes of Ce1−xLaxyCayO2−δ, wherein x = 0.15 and 0.20, 0 ≤ y ≤ x, were sintered from powders obtained by solid state reaction method. The phase identification, thermal expansion and ionic conductivities of samples were studied by X-ray diffraction (XRD), dilatometry and AC impedance spectroscopy (IS). Results showed that the samples of co-doping with La and Ca can significantly increase the ionic conductivity and lower activation energies compared with those of the singly doped ones in the temperature range of 500-800 °C. The ionic conductivities of co-doping samples decrease with Ca content. Although both systems reached the optimum ionic conductivity at y = 0.05, Ce0.85La0.15−yCayO2−δ exhibits better electrical performance. The results also showed that all the synthesized samples were fluorite-type ceria-based solid solutions. The thermal expansion was linear for all the samples.  相似文献   

13.
The microstructure, hardness, fracture toughness and thermal shock resistance were investigated for 15 vol.% TiC0.3N0.7 whisker reinforced β-sialon (Si6−zAlzO2N8−z with z=0.6) composites with additions of three different volume fractions 2, 5 and 20 vol.%, of an yttrium-containing glass oxynitride phase. The composites were prepared by hot pressing at 1750°C for 90 min under a uniaxial pressure of 30 MPa in nitrogen atmosphere. The TiC0.3N0.7 whiskers were found to survive without deteriorating in morphology or reacting with the β-sialon matrix and/or the glass phase. The TiC0.3N0.7 whiskers had no obvious influence on the matrix microstructure, but their presence improved both the hardness and the fracture toughness of the composites. The highest hardness was obtained for the whisker composite with 2 vol.% glass phase (Hv=18.6 GPa). The fracture toughness and thermal shock resistance improved with increasing glass content. The whisker reinforced composite containing 20 vol.% glass showed the highest fracture toughness (K1C=6.8 MPa m1/2). No unstable crack extension occurred during the thermal shock test of the obtained composites in the temperature interval 90-700°C, but above 700°C severe oxidation of the whiskers precludes further evaluation of thermal shock properties by the indentation-quench method applied.  相似文献   

14.
Due to the growing needs of thermal management in modern electronics, polyimide-based (PI) composites are increasingly demanded in thermal interface materials (TIMs). Graphene woven fabrics (GWFs) with a mesh structure have been prepared by chemical vapor deposition and used as thermally conductive filler. With the incorporation of 10-layer GWFs laminates (approximate 12 wt%), the in-plane thermal conductivity of GWFs/PI composite films achieves 3.73 W/mK, with a thermal conductivity enhancement of 1418% compared to neat PI. However, the out-of-plane thermal conductivity of the composites is only 0.41 W/mK. The in-plane thermal conductivity exceeds its out-of plane counterpart by over 9 times, indicating a highly anisotropic thermal conduction of GWFs/PI composites. The thermal anisotropy and the enhanced in-plane thermal conductivity can be attributed to the layer-by-layer stacked GWFs network in PI matrix. Thus, the GWFs-reinforced polyimide films are promising for use as an efficient heat spreader for electronic cooling applications.  相似文献   

15.
Microcapsules containing phase change materials (microPCMs) can be filled in polymeric matrix forming smart temperature-controlling composites. The aim of this study was to investigate the effect of interface debonding on the thermal conductivity of microPCMs containing paraffin/epoxy composites. The shell thickness and average size of microPCMs were controlled by regulating the core/shell ratios and emulsion stirring rates. Test results indicated that the thermal conductivity (Ke) of all composites decreased after a thermal shock treatment. SEM and thermography measurements were applied to observe the interface behaviors of composites after a violent thermal treatment process. It was proved that the interface debonding was generated because of the mismatch of expansion coefficient between shell and epoxy. A modeling analysis of the relative thermal conductivity (Kr) indicated that the effective approach to decrease the debonding is to enhance the molecule tangling degree between shell and matrix.  相似文献   

16.
The hybrid filler of hollow glass microspheres (HGM) and nitride particles was filled into low-density polyethylene (LDPE) matrix via powder mixing and then hot pressing technology to obtain the composites with higher thermal conductivity as well as lower dielectric constant (Dk) and loss (Df). The effects of surface modification of nitride particles and HGMs as well as volume ratio between them on the thermal conductivity and dielectric properties at 1 MHz of the composites were first investigated. The results indicate that the surface modification of the filler has a beneficial effect on thermal conductivity and dielectric properties of the composites due to the good interfacial adhesion between the filler and matrix. An optimal volume ratio of nitride particles to HGMs of 1:1 is determined on the basis of overall performance of the composites. The thermal conductivity as well as dielectric properties at 1 MHz and microwave frequency of the composites made from surface-modified fillers with the optimal nitride to HGM volume ratio were investigated as a function of the total volume fraction of hybrid filler. It is found that the thermal conductivity increases with filler volume fraction, and it is mainly related to the type of nitride particle other than HGM. The Dk values at 1 MHz and microwave frequency show an increasing trend with filler volume fraction and depend largely on the types of both nitride particles and HGMs. The Df values at 1 MHz or quality factor (Q × f) at microwave frequency show an increasing or decreasing trend with filler volume fraction and also depend on the types of both nitride particle and HGM. Finally, optimal type of HGM and nitride particles as well as corresponding thermal conductivity and dielectric properties is obtained. SEM observations show that the hybrid filler particles are agglomerated around the LDPE matrix particles, and within the agglomerates the smaller-sized nitride particles in the hybrid filler can easily form thermally conductive networks to make the composites with high thermal conductivity. At the same time, the increase of the value Dk of the composites is restricted due to the presence of HGMs.  相似文献   

17.
This study aims to investigate experimentally the effects of aspect ratio (length/diameter ratio) and concentration of multiwalled carbon nanotubes (MWCNTs) on thermal properties of high density polyethylene (HDPE) based composites. The aspect ratios of two types of MWCNT fillers are in the range of 200–400 and 500–3000. Composite samples were prepared by melt mixing up to weight fraction of 19% filler content, followed by a compression molding. Measurements of density, specific heat and thermal diffusivity (by modulated photothermal radiometry, PTR) were performed and effective thermal conductivities ke of nanocomposites were calculated using these values. The results show that the composites containing MWCNTs with higher aspect ratio have higher thermal conductivities than the ones with lower aspect ratio. In terms of conductivity enhancement ke/km  1, the results indicate that MWCNTs with higher aspect ratio provide three to fourfold larger enhancement than the ones with lower aspect ratio, at low filler concentrations.  相似文献   

18.
This study presents results from a study of the mechanical behaviour of flax reinforced Poly(l-Lactic Acid) (PLLA) under in-plane shear and mode I interlaminar fracture testing. Slow cooling of the unreinforced polymer has been shown to develop crystalline structure, causing improvement in matrix strength and modulus but a drop in toughness. The in-plane shear properties of the composite also drop for the slowest cooling rate, the best combination of in-plane shear performance and delamination resistance is noted for an intermediate cooling rate, (15.5 °C/min). The values of GIc obtained at this cooling rate are higher than those for equivalent glass/polyester composites. These macro-scale results have been correlated with microdroplet interface debonding and matrix characterization measurements from a previous study. The composite performance is dominated by the matrix rather than the interface.  相似文献   

19.
Thermally conducting aluminum nitride polymer-matrix composites   总被引:22,自引:0,他引:22  
Thermally conducting, but electrically insulating, polymer-matrix composites that exhibit low values of the dielectric constant and the coefficient of thermal expansion (CTE) are needed for electronic packaging. For developing such composites, this work used aluminum nitride whiskers (and/or particles) and/or silicon carbide whiskers as fillers(s) and polyvinylidene fluoride (PVDF) or epoxy as matrix. The highest thermal conductivity of 11.5 W/(m K) was attained by using PVDF, AlN whiskers and AlN particles (7 μm), such that the total filler volume fraction was 60% and the AlN whisker–particle ratio was 1:25.7. When AlN particles were used as the sole filler, the thermal conductivity was highest for the largest AlN particle size (115 μm), but the porosity increased with increasing AlN particle size. The thermal conductivity of AlN particle epoxy-matrix composite was increased by up to 97% by silane surface treatment of the particles prior to composite fabrication. The increase in thermal conductivity is due to decrease in the filler–matrix thermal contact resistance through the improvement of the interface between matrix and particles. At 60 vol.% silane-treated AlN particles only, the thermal conductivity of epoxy-matrix composite reached 11.0 W/(m K). The dielectric constant was quite high (up to 10 at 2 MHz) for the PVDF composites. The change of the filler from AlN to SiC greatly increased the dielectric constant. Combined use of whiskers and particles in an appropriate ratio gave composites with higher thermal conductivity and low CTE than the use of whiskers alone or particles alone. However, AlN addition caused the tensile strength, modulus and ductility to decrease from the values of the neat polymer, and caused degradation after water immersion.  相似文献   

20.
Aligned carbon nanotubes (CNTs) are implemented into alumina-fiber reinforced laminates, and enhanced mass-specific thermal and electrical conductivities are observed. Electrical conductivity enhancement is useful for electrostatic discharge and sensing applications, and is used here for both electromagnetic interference (EMI) shielding and deicing. CNTs were grown directly on individual fibers in woven cloth plies, and maintained their alignment during the polymer (epoxy) infiltration used to create laminates. Using multiple complementary methods, non-isotropic electrical and thermal conductivities of these hybrid composites were thoroughly characterized as a function of CNT volume/mass fraction. DC and AC electrical conductivity measurements demonstrate high electrical conductivity of >100 S/m (at 3% volume fraction, ∼1.5% weight fraction, of CNTs) that can be used for multifunctional applications such as de-icing and electromagnetic shielding. The thermal conductivity enhancement (∼1 W/m K) suggests that carbon-fiber based laminates can significantly benefit from aligned CNTs. Application of such new nano-engineered, multi-scale, multi-functional CNT composites can be extended to system health monitoring with electrical or thermal resistance change induced by damage, fire-resistant structures among other multifunctional attributes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号