首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A study was conducted to investigate (1) physicochemical factors that influence polymer elution from GCLs containing a blend of bentonite and linear (water-soluble) polymer (LPB GCLs) and (2) the mechanism that controls the chemical compatibility of LPB GCLs when polymer elutes. A series of hydraulic conductivity (k), free swell and viscosity tests were performed on a commercial LPB GCL using DI water, varying concentrations of NaCl and CaCl?. Comparable tests were also performed on a conventional bentonite (CB) GCL containing the same untreated bentonite and the same physical properties as the LPB GCL. The LPB GCL showed improved swelling and hydraulic performance compared to the CB GCL when permeated with salt solutions. Total organic carbon analysis of the effluents showed that polymer eluted from the LPB GCL regardless of the permeant solution. However, the rate at which polymer eluted increased as the concentration and valence of the dominant cation increased. The rate at which polymer eluted also increased with hydraulic gradient. The mass of polymer retained inside the GCL matrix did not correlate with the k of the LPB GCL. Free swell tests coupled with chemical analysis suggest that, the improved chemical compatibility of the LPB GCL was due to the ability of the polymer to scavenge cations from the solution which allows the bentonite to undergo adequate swelling during the initial hydration period. Analogous to water-prehydrated CB GCLs, the dispersed structure of the bentonite fabric and increased adsorbed water molecules attained during initial swelling controls the k of the LPB GCL when polymer elutes.  相似文献   

2.
《Soils and Foundations》2007,47(1):79-96
To investigate systematically the effects of electrolytic solutions on the barrier performance of geosynthetic clay liners (GCLs), a long-term hydraulic conductivity test for 3 years at longest was conducted on a nonprehydrated GCL permeated with inorganic chemical solutions. The hydraulic conductivity test for waste leachates was also conducted. The results of the test show that the hydraulic conductivity of GCLs significantly correlates with the swelling capacity of bentonite contained in GCLs. GCLs have excellent barrier performance of k<1.0×10-8 cm/s when the free swell is larger than 15 mL/2 g-solid regardless of the type and concentration of the permeant solution. In addition, when the results of the hydraulic conductivity test with chemical inorganic solutions were compared to those with waste leachates, the hydraulic conductivity of GCL permeated with chemical solution was almost the same within the electric conductivity of 0-25 S/m as that permeated with waste leachate having similar electric conductivity. The hydraulic conductivity of GCLs to be used in landfill bottom liners can be estimated by the hydraulic conductivity values obtained from the experiment using chemical solutions having the similar electric conductivity values, if the chemical solution had the electric conductivity within=25 S/m.  相似文献   

3.
Flow in an idealized geosynthetic clay liner (GCL) containing bentonite comprised of equisized and equispaced square granules was simulated using a hydrodynamic model to quantitatively evaluate the premise that the hydraulic conductivity of GCLs diminishes as the bentonite granules hydrate and swell into adjacent intergranular pores, creating smaller and tortuous intergranular flow paths. Predictions with the model indicate that hydraulic conductivity decreases as granules swell and intergranular pores become smaller, and that greater granule swelling during hydration is required to achieve low hydraulic conductivity when the bentonite is comprised of larger granules, or the bentonite density is lower (lower bentonite mass per unit area). Predictions made with the model indicate that intergranular pores become extremely small (<1 μm) as the hydraulic conductivity approaches 10−11 m/s. These outcomes are consistent with experimental data showing that GCLs are more permeable when hydrated and permeated with solutions that suppress swelling of the bentonite granules, and that the hydraulic conductivity of GCLs with bentonite having smaller intergranular pores (e.g., GCLs with smaller bentonite granules, more broadly graded particles, or higher bentonite density) is less sensitive to solutions that suppress swelling.  相似文献   

4.
The results of a comprehensive testing program conducted to evaluate the hydraulic conductivity (k) of two geosynthetic clay liners (GCLs) considered as a liner component for a tailings impoundment at a proposed zinc and copper mine are reported. The two GCLs were permeated with a relatively low ionic-strength ground water (GW) from the mine site and two electrolyte solutions, a process water (PW) and a simulated leachate (SL), with chemical compositions consistent with those expected during operation of the impoundment. A total of 22 flexible-wall tests were performed to determine the effects of prehydration with the GW, type of GCL, type of permeant liquid, and duration of the back-pressure stage of the test. The k values for both GCLs permeated with the GW were 1.7 × 10−9 cm/s, which is within the range 1–3 × 10−9 cm/s typically reported for GCLs permeated with low ionic-strength liquids, such as deionized water. However, the mean values of k based on permeation of duplicate specimens of both types of GCL with either PW or SL relative to the values of k based on permeation with GW, or k/kw, ranged from a factor of 200 (2.3 orders of magnitude) to a factor of 7600 (3.9 orders of magnitude). Thus, both tailings impoundment solutions had significant adverse impacts on the hydraulic performance of both GCLs. Given the overall range of k/kw values, factors such as prehydration, type of GCL, type of permeant liquid, and duration of back pressure, were relatively insignificant. The results of this study serve to emphasize the need to perform hydraulic conductivity testing using site specific materials.  相似文献   

5.
The high ionic strength of the porewater in red mud (bauxite liquor from digestion) can suppress swelling of montmorillonite, resulting in geosynthetic clay liners (GCLs) that are too permeable to be effective as liners in red mud disposal facilities. Bentonite-polymer composite GCLs (BPC GCLs) have been developed as more resilient lining materials, and some BPC GCLs have been shown to have very low hydraulic conductivity to bauxite liquors that have extreme ionic strength and pH. In this study, a nationwide investigation was conducted in China to evaluate the characteristics of bauxite liquor in Chinese impoundments, and to evaluate the suitability of GCLs containing granular sodium bentonite or BPCs for containment. Hydraulic conductivity tests were conducted on six BPC GCLs with two characteristic Chinese bauxite liquors that are hyperalkaline (pH > 12) and had ionic strengths of 76.9 mM and 620.3 mM. The BPC GCLs had hydraulic conductivity ranging from 10?8-10?12 m/s, which is higher than the hydraulic conductivity of BPC GCLs to deionized water (10?12-10?13 m/s), but lower than the hydraulic conductivity of conventional GCLs with granular sodium bentonite GCLs to the same liquors (10?7-10?8 m/s). The hydraulic conductivity of the BPC GCLs depends on the chemical properties of the leachate, the polymer loading, and the type of polymer. Microstructural analysis by scanning electron microscopy (SEM) suggests that the hydraulic conductivity of BPC GCLs is controlled by pore-blocking by polymer hydrogel, which is affected by the bauxite liquor.  相似文献   

6.
The hydraulic conductivity of geosynthetic clay liners (GCLs) permeated with deionized water (S0) and NH4+ solutions, with concentrations of 100 mg/L (S100) and 1000 mg/L (S1000), was examined under six dry-wet cycles. The internal properties of virgin, desiccated, and healed GCLs were analyzed and quantified using X-ray computed tomography images. The hydraulic conductivity of the GCLs permeated with S0 and S100 underwent a negligible change during the six dry-wet cycles, whereas that of S1000 increased by almost three orders of magnitude after two desiccations. Each desiccation, after permeating with S0 and S100, generated a completely different macro-crack pattern; however, generation of macro-cracks at the same locations from dry cycles 2 to 6 and an abundance of micro-cracks were typical for S1000. This implies the severe deterioration of bentonite due to multi-desiccations and chemical compatibility with S1000. Moreover, the swell index of bentonite exposed to S1000 was reduced by approximately half, after six dry-wet cycles. Despite the lower volume percentage of macro-cracks for S1000 compared to S0 and S100, the swelling capacity of this bentonite was insufficient to fully heal these cracks. Hence, the swelling properties of bentonite dominate crack volume with regard to determining the hydraulic conductivity of GCLs.  相似文献   

7.
8.
竖向应力作用下GCL的膨胀特性和渗透性能   总被引:3,自引:0,他引:3       下载免费PDF全文
李志斌  徐超 《岩土工程学报》2007,29(12):1876-1880
近年来,土工织物膨润土垫(GCL)被越来越多地应用到各种防渗工程之中,它的防渗有效性也成为了设计人员和研究人员所关注的焦点。GCL的防渗有效性包括渗透性能、吸附能力和内部剪切强度三个方面。通过水化膨胀试验和渗透试验研究了GCL在竖向应力作用下的膨胀特性和渗透性能,并分析了正应力和加压水化顺序的影响。试验结果表明:(1)随着竖向应力的增大,GCL的膨胀量不断减小,而GCL的渗透系数则出现先减小后略有增大的规律;(2)水化加压顺序对GCL的膨胀量和渗透系数均有影响;(3)在实际工程应用中,GCL铺设完成后在堆载之前最好完全水化,这样能够大大提高GCL的防渗有效性。  相似文献   

9.
The effects of the silt aggregation, compaction density, and water content of the subgrade on the hydration of five different geosynthetic clay liner (GCL) products is reported based on a series of laboratory column experiments conducted over a six-year period. GCLs meeting typical specifications in terms of minimum hydraulic conductivity and swell index are hydrated to equilibrium from the same subgrade soil with sufficient cations to cause cation exchange during hydration. It is then shown that the GCL bentonite granularity and GCL structure can have a significant (~four orders of magnitude) effect on hydraulic conductivity under the same test conditions (from 8 × 10−12 m/s for one GCL to 6 × 10−8 m/s for another GCL product). The effect of subgrade water content on the hydraulic performance of GCLs are not self-evident and quite dependent on the bentonite granularity, GCL structure, and permeant. Varying the subgrade water content from 5 to 16% and allowing the GCL to hydrate to equilibrium before permeation led to up to 5-fold difference in hydraulic conductivity when permeated with tap water and up to 60-fold difference when the same product is permeated with synthetic municipal solid waste leachate. When permeated with synthetic leachate, increasing stress from 70 kPa to 150 kPa led to a slight (average 37%; maximum 2.7-fold) decrease in hydraulic conductivity due to a decrease in bulk void ratio. It is shown that hydraulic conductivity is lower for GCLs with a scrim-reinforced geotextile, and/or with finer bentonite. It is shown that selecting a GCL based on the initial hydraulic conductivity and swell index in a manufacturers product sheet provides no assurance of good performance in field applications and it is recommended that designers pay more attention to selection of a GCL and preparation of the subgrade for important projects.  相似文献   

10.
Geosynthetic clay liners (GCLs) are used in landfill liner applications due primarily to their low hydraulic conductivity to water. The low hydraulic conductivity of GCLs comes from the structure of the clay in the bentonite. However, the interaction between clay and aggressive liquids may alter the structure of the clay and, thus, result in an increase in the hydraulic conductivity of the GCL. This paper presents the results of a project aimed at evaluating the impact of a synthetic leachate on the structure of four different bentonites used in the manufacturing of GCLs. The preparation of bentonite dispersions increased the interaction between the bentonites and the various liquids. The hydraulic properties of the dispersions also were tested using filter press tests to obtain flow curves. Results of these tests were correlated with the cationic concentration, electrical conductivity and pH of the dispersions, swell indexes of the bentonite extracted from the GCLs, and permittivities of the intact GCLs determined in oedopermeameter tests. The results showed that one bentonite was more sensitive to the synthetic leachate than the other bentonites. For example, the permittivities of the more sensitive bentonite based on the oedopermeameter tests and filter press tests were respectively 2.11 × 10−8 s−1 and 5.6 × 10−8 s−1, whereas the permittivities for other bentonites, including a natural sodium bentonite and two sodium-activated calcium bentonites, were respectively 5.7 to 6.5 × 10−9 s−1 and 3.2 to 3.5 × 10−8 s−1. The filter press test served as a quick and easy-to-use test to compare the performance of the various bentonites in containing a given liquid. However, the oedopermeameter test or direct permeation test is preferable to filter press tests or fluid loss tests for evaluating the long-term impact of a liquid on a bentonite.  相似文献   

11.
When geosynthetic clay liners (GCLs) are applied as bottom liners at waste containment facilities, they are naturally prehydrated by absorbing moisture in the underlying base layers. In order to evaluate the effects of cations contained in waste leachates, this study investigated the effects of the water content distribution of the GCLs prehydrated with actual soils on their hydraulic conductivities against CaCl2 solutions. The “prehydration tests”, which were conducted prior to the hydraulic conductivity tests, showed that the water content distribution of the prehydrated GCLs depends on the properties of the GCLs and the base layers. In particular, drastic differences between GCLs with powdered bentonite and GCLs with granular bentonite were observed in the prehydration water content and its distribution. Prehydrated GCLs with powdered bentonite had a higher water content and a more homogenous distribution than those with granular bentonite. The hydraulic conductivity tests showed that most of the prehydrated GCLs exhibit a low hydraulic conductivity of k?1.0×10-8 cm/s against CaCl2 solutions with 0.1-0.5 M. However, GCLs with granular bentonite may be difficult to homogeneously prehydrate and exhibit an unstable hydraulic conductivity, which varies from k=2.9×10-9 cm/s to k=1.5×10-6 cm/s. The homogeneity of the water content distribution has been considered an important factor to obtain a required barrier performance under prehydration conditions, which are naturally generated in actual sites.  相似文献   

12.
The performance of five different GCLs (two GCLs with standard sodium bentonite and three GCLs with polymer enhanced bentonite) subjected to three different climatic modes of wet-dry cycles simulating conditions to which a GCL might expose in cover systems over a prolonged time is reported. The wetting cycles lasted for 8 h, while the drying cycles varied between 16 h, seven days, and 14 days. It is shown that after around a year of accelerated aging, the hydraulic conductivity of the aged GCLs increased notably when permeated with tap water at an applied effective stress of 15 kPa for a range of heads (0.07, 0.14, 0.21, 0.49, and 1.2 m). The combined effects of the number and the duration of the wet-dry cycles, the GCL's mass per unit area, the carrier geotextile, the size and the number of the needle punch bundles, and the thermal treatment to bond the needle-punch bundles to the carrier geotextile are discussed. The poor hydraulic performance of the polymer-amended/modified bentonite GCLs is discussed.  相似文献   

13.
Combined passive treatment technologies have been used to treat acidic rock drainage (ARD), the well-known acute and costly environmental problem facing the mining industry. It is shown that geosynthetic clay liners (GCLs) were able to attenuate metals from lime treated ARD water, and maintain a neutral pH and low hydraulic conductivity (less than 4.0 × 1011 m/s) after 16 pore volumes of permeation; this implies their usefulness as a potentially significant component in combined passive treatment systems. Presented are laboratory breakthrough data for Cu, Cd, Ni, Mn, and Zn from the permeation of GCLs with 16 pore volumes of ARD, treated ARD (TARD), and a landfill leachate. Metal retention occurred in all solutions, but was greatest for the TARD, producing removal efficiencies of greater than 80%.  相似文献   

14.
A laboratory investigation on the hydration behavior of GCLs from lateritic soils was conducted under isothermal and thermal conditions (tropical climate), varying subsoil moisture contents, GCLs bentonite particle size and mineralogy. GCL hydration levels from lateritic subsoils under isothermal conditions (55%) were similar to literature findings. A slight decrease in water content of some GCLs after long periods of contact with the lateritic soils indicates that equilibrium can demand long time in these soils. GCL with granular bentonites were less efficient to hydrate from lateritic subsoils. GCLs with activated-calcium bentonites maintained hydration levels in long-term. Nonwoven geotextile facing down favored capillary effects. Thermal cycles significantly influenced GCLs hydration from subsoils. Capillary connections developed during hydration under isothermal conditions due to suction gradient reductions. Post-hydration tests under isothermal conditions showed more alterations in GCLs swelling and cation exchange properties than thermal cycles test. An increase in the saturated hydraulic conductivity of GCLs was observed in both lateritic soils, mainly for isothermal condition, although continued attending hydraulic conductivity requirements for barrier applications.  相似文献   

15.
Hydraulic conductivity of seven geosynthetic clay liners (GCLs) to synthetic coal combustion product (CCP) leachates were evaluated in this study. The leachates are chemically representative of typical and worst scenarios observed in CCP landfills. The ionic strength (I) of the synthetic CCP leachates ranged from 50 mM to 4676 mM (TCCP-50, LRMD-96, TFGDS-473, LR-2577, HI-3179 and HR-4676). One of the GCLs contained conventional sodium bentonite (Na–B) and the other six contained bentonite-polymer (B–P) mixture with polymer loadings ranging from 0.5% to 12.7%. Hydraulic conductivity tests were conducted at an effective confining stress of 20 kPa. The hydraulic conductivity of the Na–B GCLs were >1 × 10−10 m/s when permeated with all six CCP leachates, whereas the B–P GCLs with sufficient polymer loading maintained low hydraulic conductivity to synthetic CCP leachates. All the B–P GCLs showed low hydraulic conductivity (<1 × 10−10 m/s) to low ionic strength leachates (TCCP-50, I = 50 mM and LRMD-96, I = 96 mM). B–P GCLs with P > 5% showed low hydraulic conductivity (<1 × 10−10 m/s) up to HI-3179 leachates. These results suggest that B–P GCLs with sufficient polymer loading can be used to manage aggressive CCP leachates.  相似文献   

16.
A modified osmotic suction control technique for monitoring apparent transient weight changes was successfully adapted to the wetting and drying paths of geosynthetic clay liners (GCLs). Reasonable control was possible, enabling suction equilibrium to be achieved without disruption to the test. The results provide unique insight into the time-dependent changes in water retention properties and the semi-permeable membrane behaviour of the bentonite component in GCLs. The stages of suction equilibrium, related to the tri-modal pore structure of GCLs and the point of capillary break, could also be monitored. While the osmotic method has been traditionally used to control matric suction (up to 10 MPa) in soils, the overall results presented in this paper indicate that its application for total suction control in GCLs is largely due to the membrane behaviour of their bentonite component. Furthermore, because of capillary break between the GCL and the osmotic solution at the water entry (or residual) suction value of a GCL, an upper limit of 2.8 MPa suction is recommended for the application of the osmotic method to measure the water retention properties of GCLs.  相似文献   

17.
Strongly alkaline solution pH causes changes to the mineralogy of bentonites which might impact on their performance as environmental barriers. The long term effect of solution pH on the performance of bentonite barriers such as in Geosynthetic Clay Liners needs to be studied from the viewpoint of solubility and stability of the mineral phases present at extreme pH values. Changes to bentonite mineralogy brought about by extended reaction with 1 M sodium hydroxide solutions at 20–25 °C reveal that certain components of bentonites, namely smectite, opaline silica and quartz, are subject to dissolution in alkaline solution. Associated with dissolution is the formation of hydrous hydroxy-aluminosilicate as well as hydrous carbonate mineral phases. It is postulated that these precipitates, formed from reaction of bentonite with alkaline leachates can result in pore filling, which is responsible for recently measured lower hydraulic conductivity of some bentonites to high pH leachates.  相似文献   

18.
The results of a project aimed at identifying performance-based indicators that can be used by landfill operators to check the suitability of GCLs for bottom barrier applications are presented. The general methodology consisted of performing detailed characterization of the prevalent GCLs used in France for landfill barrier applications, before and after prolonged contact with several fluids during oedo-permeameter tests. Results of mineralogical analysis illustrate the variety of composition of the tested bentonites, which in addition to smectite clay contain a large number of accessory minerals. For one of the GCLs tested, the proportion of smectite was lower than 30 wt%, which highlights the limitations of the generic designation “bentonite” when referring to GCLs destined to landfill applications. Results also underline the correlation between cation exchange capacity (CEC) and smectite content, the correlation between free swell volume and proportion of exchangeable sodium and the influence of the bentonite's calcium carbonate fraction on hydraulic conductivity. Transmission electron microscopy (TEM) photographs illustrate the effect of cation exchange on clay microstructure, with the formation of clay particles which lead to increased hydraulic conductivity. The exchange is also documented by exchangeable cation analyses. Results of isotopic analyses indicate that information provided by suppliers with respect to the “natural” versus “activated” nature of the bentonite, may sometimes be arbitrary and related to factors that are very difficult to check in practice, even by the suppliers themselves. This further underlines the need for performance-based indicators, rather than generic designations, to provide objective information regarding GCL suitability for landfill applications. Several performance-based indicators are selected in order to provide practical tools for checking the suitability of sodium-bentonite GCLs in bottom barrier applications and limit values are proposed.  相似文献   

19.
In the French deep geological disposal for radioactive wastes, compacted bentonite/claystone mixtures have been considered as possible sealing materials. After emplacement in place, such mixtures are hydrated by the site solution as well as the cement solution produced by the degradation of concrete. In this study, the effects of synthetic site solution and cement solution on the hydro-mechanical behaviour of compacted mixtures of claystone and two types of bentonites (MX80 Na-bentonite and Sardinia Ca-bentonite) were investigated by carrying out a series of swelling pressure, hydraulic conductivity and mercury intrusion porosimetry (MIP) tests. It was found that for the MX80 bentonite/claystone mixture hydrated with synthetic site solution, the swelling capacity was reduced compared to the case with deionised water owing to the transformation of Na-montmorillonite to multi-cation dominant montmorillonite by cation exchanges. For the Sardinia bentonite/claystone mixture, the similar increasing rate of swelling pressure was observed during the crystalline swelling process for different solutions, suggesting insignificant cation exchanges. Additionally, the cations in the synthetic site solution could reduce the thickness of diffuse double layer and the osmotic swelling for both MX80 bentonite/claystone and Sardinia bentonite/claystone mixtures. The large-pore volume increased consequently and enhanced water flow. In the cement solution, the hydroxide could also dissolve the montmorillonite, reducing the swelling pressure, and increase the large-pore volume, facilitating the water flow. Furthermore, the decrease of swelling pressure and the increase of hydraulic conductivity were more significant in the case of low dry density because of more intensive interaction between montmorillonite and hydroxide due to the high permeability.  相似文献   

20.
Hydraulic conductivity and swell index tests were conducted on a conventional geosynthetic clay liner (GCL) containing sodium-bentonite (Na-B) using 5, 50, 100, 500, and 1000 mM ammonium acetate (NH4OAc) solutions to investigate how NH4+ accumulation in leachates in bioreactor and recirculation landfills may affect GCLs. Control tests were conducted with deionized (DI) water. Swell index of the Na-B was 27.7 mL/2 g in 5 mM NH4+ solution and decreased to 5.0 mL/2 g in 1000 mM NH4+ solution, whereas the swell index of Na-B in DI water was 28.0 mL/2 g. Hydraulic conductivity of the Na-B GCL to 5, 50, and 100 mM NH4+ was low, ranging from 1.6–5.9 × 10?11 m/s, which is comparable to the hydraulic conductivity to DI water (2.1 × 10?11 m/s). Hydraulic conductivities of the Na-B GCL permeated with 500 and 1000 mM NH4+ solutions were much higher (e.g., 1.6–5.2 × 10?6 m/s) due to suppression of osmotic swelling. NH4+ replaced native Na+, K+, Ca2+, and Mg2+ in the exchange complex of the Na-B during permeation with all NH4+ solutions, with the NH4+ fraction in the exchange complex increasing from 0.24 to 0.83 as the NH4+ concentration increased from 5 to 1000 mM. A Na-B GCL specimen permeated with 1000 mM NH4+ solution to chemical equilibrium was subsequently permeated with DI water. Permeation with the NH4+ converted the Na-B to “NH4-bentonite” with more than 80% of the exchange complex occupied by NH4+. Hydraulic conductivity of this GCL specimen decreased from 5.9 × 10?6 m/s to 2.9 × 10?11 m/s during permeation with DI water, indicating that “NH4-bentonite” can swell and have low hydraulic conductivity, and that the impact of more concentrated NH4+ solutions on swelling and hydraulic conductivity is reversible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号