共查询到20条相似文献,搜索用时 15 毫秒
1.
S.K. García-Castillo S. Sánchez-SáezJ. López-Puente E. BarberoC. Navarro 《Composites Science and Technology》2009
In this work, the effect of a biaxial preload in the behaviour of glass/polyester woven-laminate plates subjected to high-velocity transversal impact was studied. For this, an analytic model based on energy considerations that include the presence of an in-plane preload was used. The results of the analytic model for the biaxial preload state were compared with those found for a non-preload plate, the difference between them being minimal for the pre-stressed level reached in the tests (31% of the static UTS). Therefore, numerical simulations were made in order to study the effect of the preload in greater detail; furthermore, experimental tests were conducted, validating the analytic and numerical model. In general, the two methods revealed minimal differences between the values of the ballistic limit and those of the residual velocity. 相似文献
2.
Composite laminates, made of glass/epoxy using compression molding technique, were subjected to impact loading. The ballistic limit and energy absorption capacity of the laminates were obtained. Experiments were carried out to study the effect of fiber orientation and thicknesses on ballistic limit and energy absorption of the laminates, by using a rigid conical bullet having 9.5 mm diameter and mass of 7.5 g in an air gun. Analytical expressions were obtained to find the ballistic limit, residual velocity and energy absorption capacity of the laminates. The expressions obtained by considering the various damage modes, which were involved in penetration, when laminates subjected to impact loading. The values obtained from analysis were compared with experimental results and good agreement was found. The strain rate sensitivity of the glass/epoxy composites was considered for analysis. 相似文献
3.
Norihiko Taniguchi Tsuyoshi Nishiwaki Norio Hirayama Hirofumi Nishida Hiroyuki Kawada 《Composites Science and Technology》2009
The dynamic tensile properties of carbon fiber (CF) composite loaded in the matrix-dominant direction are experimentally determined. In this study, thermoplastic epoxy resin is used as a matrix of the CF composite. A dynamic tensile test is performed using a tension-type split Hopkinson bar technique. The experimental results show that there are not linear relationships between tensile strength and strain rate in case of the 10°, 30° and 45° specimens, although the tensile strength of CF composite, whose matrix is typical thermosetting epoxy resin, linearly increases with the strain rate for all fiber orientation angles. From the fracture surface observation, it is found that the ductile fracture of the matrix can be observed only when 10° off-axis specimen is tested under dynamic loading condition. It is inferred that the softening of the thermoplastic epoxy resin in the vicinity of interface area takes place with increasing strain rate. 相似文献
4.
This paper evaluated the strength reduction and probabilistic behaviors of the residual flexural strength for impacted glass/epoxy laminates with embedded shape memory alloy (SMA) wires at various temperatures. A series of impact tests were performed on base (glass/epoxy laminates without SMA wires) and SMA laminates (glass/epoxy laminates with embedded SMA wires) at temperatures of 293 K, 263 K and 233 K. Three point flexural tests were then carried out so as to investigate the post-impact strength at the aforementioned temperatures. Strength reduction behavior of impacted laminates could be described by Caprino’s residual strength prediction model. A probabilistic model was developed in order to estimate the variation in residual strength of the impacted laminates with temperature. As the temperature decreased, the variation in residual strength increased due to the embrittlement of the constituent materials of the laminates at lower temperatures. When compared to the base laminates, the SMA laminates exhibited a higher variation in residual strength, especially at lower temperatures. 相似文献
5.
Mechanical behavior of glass/epoxy tubes under combined static loading. Part I: Experimental 总被引:1,自引:1,他引:0
Alexandros E. Antoniou Christoph Kensche Theodore P. Philippidis 《Composites Science and Technology》2009,69(13):2241
A series of biaxial static tests of E-glass/epoxy tubular specimens [±45]2, subjected to combined torsion and tension/compression were performed to simulate complex stress states encountered in a wind turbine rotor blade. The failure locus in the effective axial-shear stress plane was derived experimentally while in-plane strain tensor components were measured in the tube outer surface. By means of shell theory and strain measurements in the surface of the specimen, the in-plane shear response of the outer ply was obtained, revealing dependence each time to the combined tube loading. The correlation established between the ratio of transverse normal and in-plane shear stress in the principal coordinate ply system and the elastic shear modulus, suggested a strong dependence, warning on the implications for design and certification procedures. 相似文献
6.
Toshio Ogasawara Keiji Onta Shinji Ogihara Tomohiro Yokozeki Eiichi Hara 《Composite Structures》2009,90(4):482-489
This paper presents results of the feasibility of carbon/epoxy composites (CFRP) as a future helicopter flexbeam material. Torsional behaviors of unidirectional CFRP and glass/epoxy composites (GFRP) with the same resin matrix were investigated. The initial torsional rigidity of CFRP was almost identical to that of GFRP. The torsional rigidities calculated using finite element analyses (FEA) agreed with the experimental results: the torsional rigidities are governed mainly by the material’s shear stiffness. Torsion fatigue tests were also conducted by controlling the angle of twist of the sinusoidal wave under a constant tensile axial load. No catastrophic failure occurred with either GFRP or CFRP, although decreased amplitudes of torque and torsional rigidities were observed according to the number of cycles. Results of X-ray CT inspections and numerical calculation by FEA revealed that degradation of a torsional rigidity is caused mainly by splitting crack propagation along the fiber direction. The torsion fatigue life of CFRP was superior to that of GFRP. Consequently, results confirmed that CFRP exhibits excellent properties as a torsional element of a helicopter flexbeam in terms of torsional rigidity and tension–torsion fatigue behaviors. 相似文献
7.
A qualitative analysis of experimental results from small caliber ballistic impact and dynamic indentation on a 3D glass fiber reinforced composite are presented. Microscopic analysis of the damaged specimens revealed that the current 3D weaving scheme creates inherently two weak planes which act as potential sites for delamination in the above experiments. It is concluded that while the z-yarns may be effective in limiting the delamination damage at low loads and at low rates of impact, at high loads and high loading rates delamination continues to be the dominant failure mode in 3D woven composites. It is shown that dynamic indentation can be used to capture the progression of damage during impact of 3D woven composites. 相似文献
8.
9.
The effect of CuO nanostructure morphology on the mechanical properties of CuO/woven carbon fiber (WCF)/vinyl ester composites was investigated. The growth of CuO nanostructures embedded in the surface of woven carbon fibers (WCFs) was carried out by a two-step seed-mediated hydrothermal method; i.e., seeding and growth treatments with controlled chemical precursors. CuO nanostructural morphologies ranging from petal-like to cuboid-like nanorods (NRs) were obtained by controlling the thermal growth temperature in the hydrothermal process over a growth time of 12 h. The Cu2+/O− ratio and the rate of reaction greatly influenced the formation of CuO nanostructures as self-assembled shapes on the crystal planes in the order L[0 1 0] > L[1 0 0] > L[0 0 1]. Morphological variations were analyzed by scanning electron microscopy, X-ray diffraction, and Brunauer–Emmett–Teller surface area analysis. The impact behavior, in-plane shear strength, and tensile properties of the CuO/WCF/vinyl ester composites were analyzed for different CuO NR morphologies at various growth temperatures and molar concentrations. The CuO/WCF/vinyl ester composites had improved impact energy absorption and mechanical properties because the higher specific surface area of CuO NRs grown as secondary reinforced nanomaterials on WCFs enhanced load transfer and load-bearing capacity. 相似文献
10.
Enhancement of mechanical performance of epoxy/carbon fiber laminate composites using single-walled carbon nanotubes 总被引:1,自引:0,他引:1
Behnam Ashrafi Jingwen GuanVahid Mirjalili Yunfa ZhangLi Chun Pascal HubertBenoit Simard Christopher T. KingstonOrson Bourne Andrew Johnston 《Composites Science and Technology》2011,71(13):1569-1578
Carbon nanotubes (CNT) in their various forms have great potential for use in the development of multifunctional multiscale laminated composites due to their unique geometry and properties. Recent advancements in the development of CNT hierarchical composites have mostly focused on multi-walled carbon nanotubes (MWCNT). In this work, single-walled carbon nanotubes (SWCNT) were used to develop nano-modified carbon fiber/epoxy laminates. A functionalization technique based on reduced SWCNT was employed to improve dispersion and epoxy resin-nanotube interaction. A commercial prepregging unit was then used to impregnate unidirectional carbon fiber tape with a modified epoxy system containing 0.1 wt% functionalized SWCNT. Impact and compression-after-impact (CAI) tests, Mode I interlaminar fracture toughness and Mode II interlaminar fracture toughness tests were performed on laminates with and without SWCNT. It was found that incorporation of 0.1 wt% of SWCNT resulted in a 5% reduction of the area of impact damage, a 3.5% increase in CAI strength, a 13% increase in Mode I fracture toughness, and 28% increase in Mode II interlaminar fracture toughness. A comparison between the results of this work and literature results on MWCNT-modified laminated composites suggests that SWCNT, at similar loadings, are more effective in enhancing the mechanical performance of traditional laminated composites. 相似文献
11.
The presence of stress concentrations at holes and notches is known to reduce the strength of composite materials. Due to complexity of the damage processes at a stress raiser in a composite, different modeling approaches have been developed, ranging from empirical point and average stress criteria to involved damage mechanics or cohesive zone-based models of failure. Finite fracture mechanics approach with a coupled stress and energy failure criterion, recently developed and applied mainly to cracking in homogeneous isotropic materials, allows predicting the appearance and propagation of a crack using material strength and toughness characteristics obtained from independent tests. The present study concerns application of the finite fracture mechanics to the analysis of cracking at a notch in a UD glass/epoxy composite subjected to tensile off-axis loading. Based on UD composite strength and intralaminar toughness characterized by separate tests, finite fracture mechanics analysis provided conservative estimates of crack onset stress at the notch. 相似文献
12.
The stiffness and strength of laminated glass, a composite of glass layers bonded together by polymeric interlayers, depends upon shear coupling between the glass plies through the polymer. In the design practice, this effect is commonly considered by defining the effective thickness of laminated glass, i.e., the thickness of a monolith with equivalent bending properties. Various theories have been proposed to calculate such a value for a package of two layers of glass and one polymeric interlayer, but extrapolation to a higher number of layers gives in general inaccurate results. Here, the Enhanced Effective Thickness method, previously proposed for two-glass-layer composites, is extended to the case of laminated glass beams made (i) by three layers of glass of arbitrary thickness, or (ii) by an arbitrary number of equally-thick glass layers. Comparisons with numerical experiments confirm the accuracy of the proposed approach also in these cases. 相似文献
13.
A study on the flexural properties of bidirectional hybrid epoxy composites reinforced by E glass and T700S carbon fibres in inter-ply configurations is presented in this paper. Test specimens are made by hand lay-up and their flexural properties are obtained by three point bend test in accordance with ASTM D790-07. For comparison, the flexural behaviour is also modelled numerically using finite element analysis (FEA), and analytically using the Classic Lamination Theory (CLT). It is shown from the results that in general, good agreement is found between the experimental data and the model predictions. The flexural strength decreases when partial laminas from a carbon/epoxy laminate are replaced by glass/epoxy laminas. No significant hybrid effects for the flexural strength are found from the experiments. However, simulation studies show that hybridisation can potentially improve the flexural strength. 相似文献
14.
Two types of laminate composites made of glass fibre/epoxy matrix (EPO_FV) and glass fibre/epoxy modified tri-block copolymer (Nanostrength) matrix (EPONS_FV) were manufactured by compression moulding. Some AFM investigations have been done to identify the Nanostrength dispersion in the epoxy matrix and some DMA analyses have been performed, at different frequencies, to understand the frequency or the strain rate sensitivity of both composites. Compared to EPO_FV, EPONS_FV exhibits a significant frequency/strain rate sensitivity. Impact resistance of the composite was investigated by means of low velocity impact tests. The low velocity impact results indicate that the addition of Nanostrength leads to the improved impact resistance and an increase in absorbed energy, especially at high impact energy level. SEM observations, performed on ion polished samples, reveal the presence of micro-cracks for both composites. Micro-cracks consist of a coalescence of fibre matrix de-bonding. It was also observed that EPONS_FV contains a lower density of micro-cracks compared to EPO_FV, confirming the fact that the composite with Nanostrength absorbs more energy by Nanostrength micelles cavitation. 相似文献
15.
Material models were developed to predict the mechanical behavior of glass/epoxy multidirectional laminates under complex stress states. An incremental plane stress analysis was performed, taking into account the anisotropic material non-linearity, separate damage onset conditions and distinct post-failure stiffness degradation rules. Theoretical formulations were implemented in a shell element of the 1st order shear deformation theory. Numerical results were validated via comparison with test data from cruciform specimens subjected to static biaxial tensile loading. Local strain gauge and full-field strain measurements, obtained using the Digital Image Correlation (DIC) technique, corroborated numerical predictions. Improved strength and failure mode results were derived when, in addition to stiffness reduction, compressive strength degradation in the fiber direction was also considered. 相似文献
16.
The interfacial failure criterion under combined stress state in a glass fiber/epoxy composite is investigated by the cruciform specimen method. Experiments were conducted by using specimens with a fiber whose angle from the loading direction is varied in order to make various stress state of normal and shear at the interface. Finite element analysis is performed to calculate the interfacial stress distribution. By combining the experimental measurement of the specimen stress at the interfacial debonding initiation and the finite element stress analysis, it is possible to obtain the interfacial stress state at interfacial failure. A method to determine the interfacial failure criterion and the interfacial failure initiation location simultaneously is proposed in the present study. We conclude the value of the interfacial shear strength is higher than that of the interfacial normal strength for the material system used in the present study. 相似文献
17.
Impact tests with a falling dart and flexural measurements were carried out on polypropylene based laminates reinforced with glass fibers fabrics. Research has shown that the strong fiber/matrix interface obtained through the use of a compatibilizer increased the mechanical performance of such composite systems. The improved adhesion between fibers and matrix weakly affects the flexural modulus but strongly influences the ultimate properties of the investigated woven fabric composites. In fact, bending tests have shown a clear improvement in the flexural strength for the compatibilized systems, in particular when a high viscosity/high crystallinity polypropylene was used. On the contrary, the low velocity impact tests indicated an opposite dependence on the interface strength, and higher energy absorption in not compatibilized composites was detected. This result has been explained in terms of failure mechanisms at the fiber/matrix interface, which are able to dissipate large amounts of energy through friction phenomena. Pull-out of fibers from the polypropylene matrices have been evidenced by the morphological analysis of fracture surfaces after failure and takes place before the fibers breakage, as confirmed by the evaluation of the ductility index. 相似文献
18.
Sherin Thomas 《Materials Research Bulletin》2008,43(4):843-851
The 0.83ZnAl2O4-0.17TiO2 (ZAT) ceramics were synthesized by solid state ceramic route. The effect of 27B2O3-35Bi2O3-6SiO2-32ZnO (BBSZ) glass on the microwave dielectric properties of ZAT was investigated. The crystal structure and the microstructure of the ceramic-glass composites were studied by X-ray diffraction and scanning electron microscopic techniques. The low frequency dielectric loss was measured at 1 MHz. The dielectric properties of the sintered samples were measured in the microwave frequency range by the resonance method. Addition of 0.2 wt% of BBSZ improved the dielectric properties with quality factor (Qu × f) > 120,000 GHz, temperature coefficient of resonant frequency (τf) = −7.3 ppm/°C and dielectric constant (?r) = 11.7. Addition of 10 wt% of BBSZ lowered the sintering temperature to about 950 °C with Qu × f > 10,000 GHz, ?r = 10 and τf = −23 ppm/°C. The reactivity of 10 wt% BBSZ added ZAT with silver was also studied. The results show that ZAT doped with suitable amount of BBSZ glass is a possible material for low-temperature co-fired ceramic (LTCC) application. 相似文献
19.
Chung-Lun LoJenq-Gong Duh Bi-Shiou ChiouWen-Hsi Lee 《Materials Research Bulletin》2002,37(12):1949-1960
The anorthite-based composite glass doped with TiO2 and B2O3 was prepared by quenching of molten droplets. Phase development and crystals microstructure of glass were investigated under non-isothermal conditions. A glass transition temperature of 770°C and an exothermal peak around 870°C in the DTA trace was associated with anorthite crystallization (CaAl2Si2O8). For glass specimens under nucleation and crystallization heat-treatment, the final predominant phase was identified as anorthite. Anorthite crystals show preferential nucleation at specific sites with rutile TiO2 crystals precipitated from the glassy matrix and anorthite crystallization is governed by heterogeneous volume nucleation. The introduced TiO2 plays the role of nucleating agents to reduce the crystallization temperature lower than 900°C for anorthite-based glass-ceramics. Chemical compositions could be related to the crystal microstructures on different characteristic regions. It was observed that the sintering aid of B2O3 neither reacted with nor dissolved in the anorthite or rutile TiO2 crystals, and remained a glassy phase in the matrix. Occurrence of acicular precipitations was attributed to the orientation growth of TiO2 crystals. Anorthite crystals were observed to grow with the forms of feathery-spherical particles, having a tendency to coalescence into a huge domain. 相似文献
20.
Experimental investigations on flax and glass fabrics reinforced epoxy specimens, i.e. FFRE and GFRE, submitted to fatigue tests are presented in this paper. Samples having [0/90]3S and [±45]3S stacking sequences, with similar fibre volume fractions have been tested under tension–tension fatigue loading. The specific stress-number of cycles to failure (S–N) curves, show that for the [0/90]3S specimens, FFRE have lower fatigue endurance than GFRE, but the [±45]3S FFRE specimens offer better specific fatigue endurance than similar GFRE, in the studied life range (<2 × 106). Overall, the three-stage stiffness degradation is observed in all cases except for [0/90]3S FFRE specimens, which present a stiffening phenomenon of around 2–3% which could be related to the straightening of the microfibrils. 相似文献