首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The sensing properties of polypropylene (PP)/poly(ε-caprolactone) (PCL) blends containing multiwalled carbon nanotubes (MWNT) were studied in terms of their electrical resistance change in presence of liquids (solvents). The preparation of co-continuous blends based on the double percolation concept was done by melt mixing of electrically conductive PCL composites containing 3 wt.% MWNT and neat PP in ratios of 30:70, 40:60, and 50:50. The electrical resistance change of the PCL-MWNT composites and blends was monitored in a solvent immersion/drying cycle. Various solvents, such as n-hexane, ethanol, methanol, water, toluene, chloroform, and tetrahydrofuran were successfully detected, yielding different responses and reversibility of the resistance changes.PP and PCL were tested separately for solvent sorption using ethanol and n-hexane, both showing a low sorption of n-hexane. Ethanol sorption was large for PCL and almost absent for PP. The 50/50 blend composites with 3 wt.% MWNT in the PCL phase presented larger resistance changes for n-hexane, showing larger sensing ability for this solvent compared to PCL composites with 1 and 3 wt.% loadings. The opposite response was observed for immersion in ethanol where the PCL-MWNT composites showed larger changes than the blends. As the ratio of the conductive PCL phase over PP in the blend composition (i.e. the overall MWNT content) decreased, larger resistance changes were observed. The liquid sensing properties of compression-moulded discs and melt-drawn filaments were compared indicating higher responses for the discs.  相似文献   

2.
Functional polypropylene (PP) nanocomposites were prepared by melt compounding with multiwalled carbon nanotubes (MWNT) as the electrically conductive component and barium titanate (BT) spherical nanoparticles as the ferroelectric component. To make PP electrically conductive, more than 3 wt.% MWNT is required. Surface modification of either MWNT or BT with titanate coupling agent further improves the electrical conductivity of the PP/MWNT/BT ternary nanocomposites. Interestingly, by modifying both MWNT and BT, 2 wt.% MWNT are sufficient to make the ternary nanocomposite electrically conductive. In addition, the incorporation of MWNT greatly increases the dielectric permittivity of PP/BT nanocomposites. However, to retain a low dielectric loss, the MWNT loading should be slightly less than the percolation threshold of the nanocomposites. The improved electrical conductivity and dielectric properties make the ternary nanocomposites attractive in practical applications.  相似文献   

3.
Multi-walled carbon nanotube (MWNT)-reinforced silicon carbide (SiC) ceramic fibers were successfully prepared by blending MWNTs (0-0.5 wt.%) with polycarbosilane, followed by melt spinning, curing, and pyrolysis. The MWNTs used in this study were modified with a chemical treatment. It was found that the MWNTs were well-dispersed in the matrix and aligned with the axis of the fibers after ultrasonic dispersion combined with melt spinning. Mechanical measurements revealed that significant improvement in Young’s modulus and tensile strength was achieved by incorporating MWNTs into the ceramic fibers. The addition of 0.5 wt.% MWNTs led to a 93.6% increase in the Young’s modulus and a 38.5% increase in the tensile strength.  相似文献   

4.
Liquid infiltration is an efficient way to densify carbon nanotubes (CNTs) and was used to strengthen CNT fibres in the method of array spinning. Rather than the volatility, the dipole moment of solvent plays a more important role in determining the densification level. The fibres densified by highly polar but non-volatile solvents such as N,N-dimethylformamide, dimethyl sulphoxide, and N-methyl-2-pyrrolidone were 100–200 MPa stronger than those by ethanol and acetone. Ethylene glycol is the most efficient solvent due to its two polar OH groups and improved the fibre strength to 1.45 GPa. Long chain or cross-linked polymers like polyvinyl alcohol, polyimide, and bismaleimide (BMI) were introduced into CNT fibres by infiltration with aid of polar solvents. These polymers reinforced the fibres significantly, as they can connect non-neighboring CNTs and benefit the load transfer. The strongest CNT/BMI fibre was 2.38 GPa in strength and 110 GPa in modulus.  相似文献   

5.
Polyamide 6 (PA6) and polyamide 6.6 (PA66) were filled with multiwalled carbon nanotubes (MWNT) using small scale melt mixing under variation of processing conditions, including temperature, rotation speed, and mixing time. In PA66 an electrical percolation threshold of 1 wt% MWNT was found which is lower than that of PA6 at 2.5–4 wt%. In both cases mixing conditions influenced strongly the dispersion and distribution of CNT and the electrical volume resistivity, whereas crystallisation behaviour was only slightly changed. With increasing mixing energy input remaining agglomerates were less in number and smaller, leading to better dispersion. On the other hand, in samples containing 5 wt% MWNT in PA6 electrical volume resistivity showed a minimum at a quite low energy input and then increased considerably with further input of mixing energy. This increase may be related to MWNT breaking during mixing and encapsulation of MWNT by the polyamide chains.  相似文献   

6.
Nanocomposites containing four different polyamide 12 (PA12) types and three grades of multiwalled carbon nanotubes (MWNTs) were prepared via small-scale melt processing to study the effect of different MWNTs and the influence of polymer properties on the dispersion of the fillers and the electrical properties of the composites. Under the selected mixing conditions the lowest electrical percolation threshold of 0.7 wt.% was found for Nanocyl™ NC7000 in low viscous PA12. Moreover, big influences of the end group functionality (acid or amine excess) and the melt viscosity of the matrix were found. Composites of PA12 with acid excess showed lower percolation thresholds than those based on amine terminated materials. At constant end group ratio low viscous matrices resulted in lower percolation thresholds than high viscous materials. The best MWNT dispersion was obtained in both high viscous PA12 composites. In these systems the mixing speed was varied indicating an optimum concerning electrical conductivity at 150 rpm as compared to 50 and 250 rpm.  相似文献   

7.
Highly porous biocompatible composites made of polycaprolactone (PCL) and 45S5 Bioglass® (BG) were prepared by a solid–liquid phase separation method (SLPS). The composites were obtained with BG weight contents varying in the range 0–50%, using either dimethylcarbonate (DMC) or dioxane (DIOX) as solvent, and ethanol as extracting medium. The porosity of the scaffolds was estimated to be about 88–92%. Mechanical properties showed a dependence on the amount of BG in the composites, but also on the kind of solvent used for preparation, composites prepared with DIOX showing enhanced stress at deformation with respect to composites prepared with DMC (stress at 60% of deformation being as high as 214 ± 17 kPa for DIOX-prepared composites and 98 ± 24 kPa for DMC-prepared ones, with 50 wt/wtPCL% of glass), as well as higher elastic modulus (whose value was 251 ± 32 kPa for DIOX-prepared scaffolds and 156 ± 36 kPa for DMC-prepared ones, always with 50 wt/wtPCL% of glass). The ability of the composites to induce precipitation of hydroxyapatite was positively evaluated by means of immersion in simulated body fluid and the best results were achieved with high glass amounts (50 wt/wtPCL%). In vitro tests of cytotoxicity and osteoblast proliferation showed that, even if the scaffolds are to be considered non-cytotoxic, cells suffer from the scarce wettability of the composites.  相似文献   

8.
Multi-walled carbon nanotubes (MWNTs) were sonicated in the dimethylformamide solution of poly(vinylidene fluoride) (PVDF). The PVDF-covered MWNTs were then melt-blended with poly(methyl methacrylate) (PMMA). The dynamic mechanical behavior of various composites was studied. The presence of a small amount of PVDF leads to a significant improvement in the storage moduli of the MWNT/PMMA composites at low temperatures. The storage modulus of a PVDF/MWNT/PMMA composite containing 0.5 wt.% PVDF is almost twice as that of a MWNT/PMMA composite at 50°C. However, a further increase in the PVDF content leads to a reduction of the storage modulus. The beneficial effect of PVDF diminishes at higher temperatures.  相似文献   

9.
The viscoelastic and mechanical properties of composites multi walled carbon nanotube (MWNT)/epoxy at different weight fractions (0.1, 0.5, 1 and 2 wt.%) were evaluated by performing tensile and dynamic-mechanical thermal analysis (DMTA) tests. The MWNT/epoxy composite were fabricated by sonication and a cast molding process. The results showed that addition of nanotubes to epoxy had significant effect on the viscoelastic and mechanical properties. However, the use of 0.5 wt.% increased the viscoelastic properties more significantly. Concerning viscoelastic modeling, the COLE–COLE diagram has been plotted by the results of DMTA test. These results show a good agreement between the Perez model and the viscoelastic behavior of the composite.  相似文献   

10.
In this study, poly(p-phenylene sulfide) based nanocomposites containing multi-walled carbon nanotubes (MWNTs) were produced by dilution of a 15 wt.% MWNT/PPS masterbatch via twin screw extrusion process. The electrical conductivities of the nanocomposites were measured and percolation threshold was observed below 0.77 vol.% MWNTs. The state of dispersion and distribution quality of MWNTs was analyzed on macro- and nanoscale through transmission light and scanning electron microscopy (SEM). A good deagglomeration of primary macroagglomerates and a homogenous MWNT distribution on nanoscale was found. The dependence of conductivity on MWNT concentration was estimated using statistical percolation theory which matches the experimental data quite well. A new empirical equation was set up to fit the electrical conductivity using quantitative values of visible percolating MWNTs which were detected by charge contrast imaging in SEM.  相似文献   

11.
An interesting correlation between nature of wrapping, wrapping thickness and crystallinity of regioregular poly(3-hexyl thiophene) (rrP3HT) wrapped multi-walled nanotube (MWNT) arises due to different loading of rrP3HT and their combined effect on the properties of a ternary system prepared by uniform dispersion of wrapped CNT into thermoplastic polyurethane (TPU) are highlighted in the article. Data accumulated through different techniques demonstrate that 2.5 wt.% of rrP3HT with 0.5 wt.% of MWNT can be the ideal ratio of filler to achieve highest properties in these stable self-sustained homogeneous composites. Wrapping of rrP3HT on the wall of CNT through π-π and/or CH-π interaction is ascertained from shifting in peak position and Iasym/Isym ratio of CC bond of rrP3HT in FTIR spectroscopy. Strong quenching of fluorescence intensity of rrP3HT in composite further support π-π interaction between rrP3HT and CNTs. SEM micrograph of rrP3HT/TPU blends suggest uniform globular dispersion of polythiophene into TPU matrix without any separate phase domain and addition of CNTs considerably reduce globule size. Single Tg(∼−40 °C, DMA, DSC, TMA) clearly ascertain the miscibility of composite. An ‘order to order transition’ through coil to rod transformation leads to strong, sharp red shifting (∼150 nm shift compared to pristine rrP3HT) in emission peaks of rr-poly (3-hexylthiophene) in blends. Further red shifting and highest quenching is observed in case of 2.5% rrP3HT loaded ternary system whereas blue shifting and quenching in case of 0.5 wt.% (non-uniform wrapping) and 5 wt.% (agglomerates) rrP3HT loading.  相似文献   

12.
This research concerns the effect of conductive network formation in a polymer melt on the conductivity of multi-walled carbon nanotube/thermoplastic polyurethane composite systems. An extremely low percolation threshold of 0.13 wt.% was achieved in hot-pressed composite film samples, whereas a much higher CNT concentration (3–4 wt.%) is needed to form a conductive network in extruded composite strands. This is explained in terms of the dynamic percolation behaviour of the CNT network in the polymer melt. The temperature and CNT concentration needed for dynamic percolation to take effect were studied by the conductivity versus temperature behaviour of extruded strands, in an attempt to optimise the processing conditions.  相似文献   

13.
The electrical percolation behaviour of five different kinds of carbon nanotubes (CNTs) synthesised by two CVD techniques was investigated on melt mixed composites based on an insulating polyamide 6.6 matrix. The electrical percolation behaviour was found to be strongly dependent on the properties of CNTs which varied with the synthesis conditions. The lowest electrical percolation threshold (0.04 wt.%) was determined for as grown multi-walled carbon nanotubes without any purification or chemical treatment. Such carbon nanotubes were synthesised by the aerosol method using acetonitrile as ferrocene containing solvent and show relatively low oxygen content near the surface, high aspect ratio, and good dispersability. Similar properties could be found for nanotubes produced by the aerosol method using cyclohexane, whereas CNTs produced by the fixed bed method using different iron contents in the catalyst material showed much higher electrical percolation thresholds between 0.35 and 1.02 wt.%.  相似文献   

14.
Metal matrix composites with embedded multiwall-carbon nanotubes (MWNT) are attractive because MWNTs exhibit high intrinsic thermal conductivity. Thus to improve the thermal conductivity of a metal matrix, silver matrix composites with MWNT were prepared by “chemical” mixing, different active elements were introduced enhancing the bonding between inclusions and matrix. The evolution of the thermal conductivity and the coefficient of thermal expansion CTE as a function of the MWNT concentration and the presence of active elements cobalt, molybdenum or nickel in the silver matrix in Ag–X/MWNT composites are presented. A transition from weak to strong matrix/MWNT bonding is observed by adding active elements, the latter leading concomitantly to an increase in thermal conductivity and a decrease in CTE. The thermal conductivity was found to increase by up to 10% for a composition of 0.2 wt.% MWNT and cobalt as active element and a 6% decrease in CTE compared to a pure silver reference.  相似文献   

15.
This study presents a comparison of the effect of various wood fibre types in polylactic acid and polypropylene composites produced by melt processing. The study also reveals the reinforcing effect of pelletised wood fibres compared to conventionally used wood flour or refined fibres. Composites containing 30 wt.% of chemical pulps, thermomechanical pulp and wood flour were produced by compounding and injection moulding. Fibre morphologies were analysed before and after melt processing. The dispersion of the fibres and mechanical performance of the composites were also investigated. Fibre length was reduced during melt processing steps, reduction being higher with longer fibres. Wood fibres provided clearly higher plastic reinforcement than wood flour. Comparing the wood fibre types, TMP fibres provided the highest improvement in mechanical properties in polylactic acid composites with uniform fibre dispersion. In polypropylene composites, fibre selection is not as crucial.  相似文献   

16.
Four types of thin film coating were carried out on copper for electronic materials by the electroless plating method at a pH range from 3 to 9. The coating performance was evaluated by electrochemical impedance spectroscopy and potentiodynamic polarization testing in a 3.5 wt.% NaCl solution. In addition, atomic force microscopy and X-ray diffraction were also used to analyze the coating surfaces. The electrochemical behavior of the coatings was improved using the electroless nickel plating solution of pH 5. The electroless nickel/immersion gold on the copper substrate exhibited high protective efficiency, charge transfer resistance and very low porosity, indicating an increase in corrosion resistance. Atomic force microscopy and X-ray diffraction analyses confirmed the surface uniformity and the formation of the crystalline-refined NiP {1 2 2} phase at pH 5.  相似文献   

17.
Carbon nanofibers dispersed β-SiC (CNFs/SiC) nanocomposites were prepared by hot-pressing via a transient eutectic phase route at 1900 °C for 1 h under 20 MPa in Ar. The effects of additional CNFs content between 1 and 10 wt.% were investigated, based on densification, microstructure, thermal and mechanical properties. The CNFs/SiC nanocomposites by the CNFs contents below 5 wt.% exhibited excellent relative densities over 98% with well dispersed CNFs. However, the CNFs/SiC nanocomposites containing the CNFs of 10 wt.% possessed a relative density of 92%, accompanying CNFs agglomerates and many pores located inside the agglomerates. The three point bending strength gradually decreased with the increase of CNFs content, but the indentation fracture toughness increased to 5.7 MPa m1/2 by the CNFs content of 5 wt.%. The thermal conductivity was enchanced with the increase of CNFs content and represented a maximum value of 80 W/mK at the CNFs content of 5 wt.%.  相似文献   

18.
Two ethylene–vinyl acetate (EVA) copolymers containing 10 and 25 wt.% vinyl acetate (EVA10 and EVA25) were utilized to explore the effect of molecular polarity on the formation of conductive carbon nanotube (CNT) network in EVA melt under an electric field. Because of the different interfacial energy, it was supposed to be stronger molecular chain-CNT interaction in CNT/EVA25 than that in CNT/EVA10. The critical time for conductive CNT network formation decreased with annealing temperature, filler loading and EVA polarity. The activation energy of conductive CNT network formation (93.9 kJ/mol) in CNT/EVA10 is lower than that (104.7 kJ/mol) in CNT/EVA25. By a thermodynamic percolation model, the percolation threshold at the equilibrium state was about 0.19 vol.% for CNT/EVA10, while it rose to 0.27 vol.% for CNT/EVA25. Morphological observation showed a high degree of CNT alignment in CNT/EVA10 compared to CNT/EVA25 after application of an electric field. The results suggested the strong CNT–EVA chain interaction and higher viscosity of polymer matrix limited the CNT alignment and the conductive network tended to form easily in EVA melt with a low chain polarity.  相似文献   

19.
The influence of prepreg solvent content on void occurrence in woven glass fiber-reinforced polyimide composites and their tensile properties was studied. A precursor solution of SKYBOND 703 was diluted in an additional solvent (n-methyl pyrrolidone) and the glass woven fabric was immersed in about 40 wt.% polyamic acid, in solvent. Prepregs were dried at 373 K for different time intervals, ranging from 2 to 24 h. Prepregs with varying residual solvent content under each condition were laid up, and their [(0/90)]4 composite laminates were formed by autoclaving at a hydrostatic pressure of 0.7 MPa. The relationship of drying time with the amount of residual prepreg solvent, as well as with the volume fractions of fiber and voids was investigated. The void geography and content for each composite laminate, and the tensile strength and modulus at room temperature were also evaluated. The results clearly indicated that, depending on the altering residual solvent content in the prepreg, the void geometry and location influenced reduction of the tensile properties of woven fabric composite laminate. An appropriate prepreg resin viscosity during curing, which avoids reduction of the tensile properties, was revealed.  相似文献   

20.
Composites of Kraton-D® 1102 BT (a styrene–butadiene–styrene block copolymer) and multi-walled carbon nanotubes (MWCNTs) were prepared by melt mixing. The composites were characterized by electrical conductivity measurements (Coleman’s method), mechanical properties (DMA and stress–strain tests), thermal stability (thermogravimetry) and morphology of dispersion (SEM). Finally, the resulting composites were compared with those made by the solution casting method. The results showed a strong influence of the preparation methodology on the final properties of the composites due to changes in morphology. Composites prepared by casting showed a higher electrical conductivity than extruded ones; the composites with 6 wt.% of MWCNT prepared by extrusion presented conductivity of the same order of magnitude as the composite with 1 wt.% of MWCNT prepared by casting – 10−3 to 10−4 S cm−1. However, the extruded samples presented better mechanical properties than the casting ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号