首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The behaviors of piezoelectric bending actuators both in static and dynamic conditions driven by a high electric field were investigated and are summarized in this paper. In the static condition, the polarization and the displacement were measured and analyzed. It was found that the displacement hysteresis loop is the superposition of displacement loop induced by each layer of the actuator. The shape variation of the hysteresis loop is affected by the actuator configuration, i.e., the arrangement of electric field and poling direction. When the poling direction is parallel to an even electric field, such as parallel bimorph, the domain turns to switch at the exact coercive field of the piezoelectric material. However, when the poling direction is antiparallel to the electric field, such as series bimorph, the effect of electric field redistribution will take place during the domain reorientation, which reduces the actual electric field in the electric field–poling direction antiparallel layer, therefore prohibiting further domain reorientation. As a result, the series bimorph is noted to be more resistant to domain reorientation than the parallel bimorph. In the dynamic condition, the functions and relations of vibration velocity, heat generation, stress, and frequency were examined both theoretically and experimentally. It was found that the stress effect dominates at low frequency. At low frequency the failure mode of the actuator is often the physical fracture of the material. However, at high frequency, the failure modes mainly resulted from heat generation, unstable operation, depoling, and domain reorientation of the actuators. The vibration velocity will also decrease accordingly at the high frequency range due to more losses and heat generation.  相似文献   

2.
PZT (lead zirconate titanate) multilayer actuators were of interest due to their small volume, fast response, low power consumption and low driving voltage. But this multilayer actuator had some problems. However, due to internal stress around electrodes, crack and delamination were very important issues. Around the edge of conventional inter-digital electrodes, non-uniform electric field generates the stress concentration, which causes the ceramic crack and delamination. The internal stress distribution in multilayer actuator was analysed by a numerical simulation. And by using float electrode, multilayer actuator was manufactured to decrease internal stress concentration of inter-digital electrode. The float electrode could suppress the electric field concentration and cracking in the actuator.

Destruction mechanism in multilayer ceramic actuators has been investigated under cyclic electric fields. Crack propagation has been observed dynamically by using optical microscopy, and the accompanying characteristic of acoustic emission was measured.  相似文献   


3.
This paper presents original results obtained in the development of the moonie-type transducers for actuator applications. The moonie-type actuators fill the gap between multilayer and bimorph actuators, but its position-dependent displacement and low generative force are unacceptable for certain applications. The moonie transducers were modified systematically by using finite element analysis combined with experimental techniques. A new transducer design, named “cymbal transducer”, was developed with larger displacement, larger generative forces, and more cost-effective manufacturing. The cymbal transducers consist of a cylindrical ceramic element sandwiched between two truncated conical metal endcaps and can be used as both sensors and actuators. The cymbal actuator exhibits almost 40 times higher displacement than the same size of ceramic element. Effective piezoelectric charge coefficient, Eff. d33, of cymbal is roughly 40 times higher than PZT itself  相似文献   

4.
Electromechanical coupling mechanisms in piezoelectric bending actuators are discussed in this paper based on the constitutive equations of cantilever bimorph and unimorph actuators. Three actuator characteristic parameters, (e.g., electromechanical coupling coefficient, maximum energy transmission coefficient, and maximum mechanical output energy) are discussed for cantilever bimorph and unimorph actuators. In the case of the bimorph actuator, if the effect of the bonding layer is negligible, these parameters are directly related to the transverse coupling factor lest. In the case of the unimorph actuator, these parameters also depend on the Young's modulus and the thickness of the elastic layer. Maximum values for these parameters can be obtained by choosing proper thickness ratio and Young's modulus ratio of elastic and piezoelectric layers. Calculation results on four unimorph actuators indicate that the use of stiffer elastic material is preferred to increase electromechanical coupling and output mechanical energy in unimorph actuators.  相似文献   

5.
A laminated piezoelectric bimorph actuator with a graded compositional distribution of PZT and Pt was fabricated, and its deflection characteristics were evaluated. Using experimentally determined compositional dependency of elastic and piezoelectric properties in the PZT/Pt composites, the modified classical lamination theory and the finite element method were applied to find the optimum compositional profile that will give a larger deflection and smaller stress, simultaneously. The miniature bimorph-type graded actuator that consists of a composite internal-electrode (PZT/30 vol% Pt) and three piezoelectric layers of different compositions (PZT/0–20 vol% Pt) were fabricated by powder stacking and sintering. The deflection of the actuator was measured using electric strain gages mounted on the top and bottom surfaces of the actuator. The deflection was found to strongly depend on the composition distribution profile. Under an applied electric field of 100 V m–1, the actuator with an optimum composition profile exhibited a curvature of up to 0.03 m–1, which is a satisfactory performance for this kind of actuators. The stress generated on actuation was estimated to be as low as 0.4 MPa, which is much smaller than those of conventional directly bonded actuators and will assure a long actuation life.  相似文献   

6.
This paper presents a new type of linear ultrasonic actuator that can drive a slide by ultrasound. The ultrasonic actuator consists of a metal plate with uniform triangular grooves, multilayer piezoelectric vibrator, and supporting structure. The multilayer piezoelectric vibrator is used to excite a flexural vibration in the metal plate that is adjusted to lie horizontally. When the metal plate vibrates, a glass slide on it is levitated in the vertical direction and linearly driven along the length direction. Experimental characteristics of the prototype are presented here. This is the first report case of using the sound field that is generated by a grooved metal plate, to drive a slide levitated by acoustic radiation force.  相似文献   

7.
A laminated piezoelectric bimorph actuator with a graded compositional distribution of PZT and Pt was fabricated, and its deflection characteristics were evaluated. Using experimentally determined compositional dependency of elastic and piezoelectric properties in the PZT/Pt composites, the modified classical lamination theory and the finite element method were applied to find the optimum compositional profile that will give a larger deflection and smaller stress, simultaneously. The miniature bimorph-type graded actuator that consists of a composite internal-electrode (PZT/30 vol% Pt) and three piezoelectric layers of different compositions (PZT/0–20 vol% Pt) were fabricated by powder stacking and sintering. The deflection of the actuator was measured using electric strain gages mounted on the top and bottom surfaces of the actuator. The deflection was found to strongly depend on the composition distribution profile. Under an applied electric field of 100 V m−1, the actuator with an optimum composition profile exhibited a curvature of up to 0.03 m−1, which is a satisfactory performance for this kind of actuators. The stress generated on actuation was estimated to be as low as 0.4 MPa, which is much smaller than those of conventional directly bonded actuators and will assure a long actuation life.  相似文献   

8.
This paper presents a novel, large-deflection piezoelectric folded cantilever microactuator (PFCM). A multimorph model for the large-deflection PFCM is derived, in which unified formulas for deflection angle and vertical displacement of N-level PFCM are obtained. Based on the model, multilayer PFCMs using PZT film are designed and optimized. The large-deflection PFCM is extensively applicable to micro-devices or microsystem applications such as micro-optical switches, microelectromechanical systems (MEMS) scanners, and so forth.  相似文献   

9.
晶体结构对压电陶瓷微位移驱动器特性的影响   总被引:5,自引:0,他引:5  
对钙钛矿结构的PZT-5和钨青铜结构的PBNN二种压电陶瓷制成的压电微位移器进行了电压-位移特性的比较和分析,发现我们所研制的PBNN压电微位移器具有线性好、回零好、等优点。  相似文献   

10.
A novel multilayer in-plane bending piezoelectric actuator, called a multilayer split-morph, was designed and fabricated by thick-film screen-printing technology for a dual-stage head-positioning actuator system in a hard disk drive. The design, operation and theoretical principles have been described. The electromechanical performance of the fabricated actuators has been evaluated. The actuation stroke of the actuator is in inverse proportion to the thickness of the piezoelectric layer. The highest displacement/voltage sensitivity of 0.154µmV-1 is achieved in a trapezoidal multilayer split-morph with a thickness of 35 m in each piezoelectric layer. The corresponding fundamental resonance frequency of the sway mode is high at 47 kHz in the trapezoid actuator with dimensions of 10.14 mm length, 3.08 mm and 1.54 mm widths of the two parallel sides of the trapezoid. The multilayer split-morph was designed to integrate directly onto a modified suspension load beam. With the combined attractive performances indicated above, the batch fabricated multilayer split-morph can provide a low-cost but promising solution for achieving very high track densities in a hard disk drive by implementing a high performance dual-stage head-positioning actuator system.  相似文献   

11.
针对精密机械的微位移隔振问题,设计了一种以PVDF压电薄膜为作动器和传感器的新型智能隔振复合结构。根据压电方程推导出了层叠式PVDF压电薄膜作动器厚度变形量表达式,建立了该智能复合结构的隔振理论模型,采用LMS自适应控制算法,以Matlab和有限元混合建模分析方式对本智能隔振复合结构的动态特性进行研究。有限元模型的分析结果与Matlab计算数据一致,验证了本新型智能隔振复合结构对微位移隔振的有效性,其结论将为精密仪器、微纳米设备的微位移智能主动隔振奠定理论基础。  相似文献   

12.
Meshless analysis of piezoelectric devices   总被引:7,自引:0,他引:7  
 The sensor and actuator properties of piezoelectric materials make them well suited for applications in a variety of microelectromechanical systems (MEMS). Simulating the response of piezoelectric devices requires solving coupled electrical and mechanical partial differential equations. In this paper, we have implemented a meshless point collocation method (PCM) to solve the governing equations. Interpolation functions are constructed from a reproducing kernel approximation, and the governing equations are discretized using a collocation approach. PCM is implemented using either a relaxation algorithm or a fully-coupled algorithm. Comparisons between the two algorithms are given. To demonstrate the performance of PCM, the behavior of two static single-layer problems and a piezoelectric bimorph have been modeled. The bimorph analysis is extended to model a prototype MEMS device. Received: 6 June 2000  相似文献   

13.
The thermal bimorph is a very popular thermal sensing mechanism used in various applications from meat thermometers to uncooled infrared cameras. While thermal bimorphs have remained promising for scanning thermal microscopy, unfortunately the bending of the bimorph directly interferes with the bending associated with topographical information. We circumvent this issue by creating bimorphs that twist instead of bending and demonstrate the superior properties of this approach as compared to conventional scanning thermal microscopy.  相似文献   

14.
This article contains electromechanical analysis of a piezoelectric bimorph actuator at high electric field by incorporating second-order constitutive equations of piezoelectric material. Tip deflection, block force, block moment, block load, output strain energy, output energy density, input electrical energy, and energy efficiency are analytically derived for the actuator at high electric field. The analysis shows that output energy and energy density increase more rapidly at high electric field, compared to the prediction by the linear model. The analysis shows energy efficiency depends on electric field. Some analytical results are validated with the published experimental results.  相似文献   

15.
Seo DK  Kang TJ  Kim DW  Kim YH 《Nanotechnology》2012,23(7):075501
We demonstrate a novel configuration of an electrothermal actuator (ETA), which is based on a polydimethylsiloxane (PDMS) slab sandwiched by upper and lower active layers of CNT-PDMS composite. When only one active layer of a single sandwich structure ETA is heated and the other is not, there exists a thermal gradient in the direction of the slab thickness, resulting in bending motion toward the unheated side. Moreover, a dual sandwich structure ETA, consisting of two parallel assembled sandwich structures on the same body, has the unique ability to act with a twisting motion as the two ETAs bend in opposite directions. We expect the advent of the bendable and twistable actuator to break new ground in ETAs.  相似文献   

16.
This paper describes the development of a bimorph-actuated twin-probe device utilized for uniaxial tensile test to measure tensile elongation of a film specimen. The device consists of two sets of microscale cantilever probes with piezoresistive sensor to detect the position of two gauge marks on a specimen, and multiple pairs of bimorph actuators to produce in-plane motion for scanning those marks. By Joule's heating, the bimorph actuators connecting two cantilever probes are able to move along the tensile direction. When those probes climb the gauge marks having convex line structure, the sensor signals originating from the piezoresistive effect are output by the cantilever's deflection. The elongation of a tensile specimen can be calculated from the moving velocity of cantilever probes and the time difference between two sensor signals. The performance of the device produced through conventional micromachining technologies was investigated. Elongation of single-crystal silicon (SCS) film specimen was measured during uniaxial tensile loading. The mean Young's modulus of 165.1 GPa which was measured by using the device was in good agreement with the analytical value. The proposed bimorph-actuated twin-probe device would be useful for measuring elongation of a film specimen during the tensile test.  相似文献   

17.
A Resistivity Gradient Piezoelectric FGM Actuator   总被引:4,自引:0,他引:4  
To whom correspondence should be addressedE-mail: zymeng@guomai.sh.cn1. IntroductionDuring the last several years the application ofpiezoelectric materials as reliable micro scale positioner has undergone considerable research and development work[1-3]. The two most common typesof piezoelectric actuators are the multilayer ceramicactuator with internal electrodes and the cantileveredbimorph actuator. However these technologies havetheir limitations in regard to size, weight, maximum displacem…  相似文献   

18.
We propose a corrugated polyvinylidene fluoride (PVDF) bimorph power harvester with the harvesting structure fixed at the two edges in the corrugation direction and free at the other edges. The resonant frequency of a corrugated PVDF bimorph is readily adjusted through changing either its geometrical configuration or the span length, which can keep the harvester operating at the optimal state in environments with different ambient vibrations. The governing equations of a PVDF bimorph with a corrugation shape are derived from the transfer-matrix technique. Statistical results show that the adaptability of a harvester to the operating environment can be improved greatly by designing the harvesting structure with adjustable resonant frequency.  相似文献   

19.
This article presents an electromechanical analysis for a piezoelectric bimorph actuator with a flexible extension, which is used to increase the tip deflection. The performance measuring attributes of such an actuator are derived, and a genetic algorithm is used for multi-objective optimization. The analysis reveals that for a thick flexible extension, the length of the extension provides Pareto optimal solutions for multi-objective optimization. The analysis also shows that as the thickness of the flexible extension decreases, the Pareto optimal solutions converge to a single solution for multi-objective optimization. We have considered nonlinear deflection behavior of piezoelectric materials at high electric fields, and series and parallel electrical connections in the analysis.  相似文献   

20.
Hysteresis is a common phenomenon in nonlinear systems. Piezoelectric bimorphs show hysteretic behavior when operating as actuators. Tools that produce the characterization of these devices are available; they use high-cost setups that measure deformations with resolutions on the order of nanometers. In this paper, a new low-cost experimental setup that uses coupled infrared detectors to investigate the behavior of piezoelectric actuators is discussed. The tool, providing deformation measurements with a resolution on the order of 10 , is intended to produce a rough estimation of the device behavior and is of interest for research and educational purposes. Low cost, easy reproducibility in research and educational laboratories, a contactless measurement strategy, an inset calibration facility, and a suitable user interface are the main features of the tool developed. Notes on the uncertainty introduced by the tool when estimating bimorph deformations are given. Moreover, a case study that concerns the characterization of a piezoelectric bimorph actuator is discussed to illustrate the performance of the system developed in a real case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号