首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this study is to evaluate the effect of low-level hydrogen sulfide (H2S) on carbon dioxide (CO2) corrosion of carbon steel in acidic solutions, and to investigate the mechanism of iron sulfide scale formation in CO2/H2S environments. Corrosion tests were conducted using 1018 carbon steel in 1 wt.% NaCl solution (25 °C) at pH of 3 and 4, and under atmospheric pressure. The test solution was saturated with flowing gases that change with increasing time from CO2 (stage 1) to CO2/100 ppm H2S (stage 2) and back to CO2 (stage 3). Corrosion rate and behavior were investigated using linear polarization resistance (LPR) technique. Electrochemical impedance spectroscopy (EIS) and potentiodynamic tests were performed at the end of each stage. The morphology and compositions of surface corrosion products were analyzed using scanning electron microscopy (SEM)/energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). The results showed that the addition of 100 ppm H2S to CO2 induced rapid reduction in the corrosion rate at both pHs 3 and 4. This H2S inhibition effect is attributed to the formation of thin FeS film (tarnish) on the steel surface that suppressed the anodic dissolution reaction. The study results suggested that the precipitation of iron sulfide as well as iron carbonate film is possible in the acidic solutions due to the local supersaturation in regions immediately above the steel surface, and these films provide corrosion protection in the acidic solutions.  相似文献   

2.
Formation of H2O2 from H2 and O2 and decomposition/hydrogenation of H2O2 have been studied in aqueous acidic medium over Pd/SiO2 catalyst in presence of different halide ions (viz. F, Cl and Br). The halide ions were introduced in the catalytic system via incorporating them in the catalyst or by adding into the reaction medium. The nature of the halide ions present in the catalytic system showed profound influence on the H2O2 formation selectivity in the H2 to H2O2 oxidation over the catalyst. The H2O2 destruction via catalytic decomposition and by hydrogenation (in presence of hydrogen) was also found to be strongly dependent upon the nature of the halide ions present in the catalytic system. Among the different halides, Br was found to selectivity promote the conversion of H2 to H2O2 by significantly reducing the H2O2 decomposition and hydrogenation over the catalyst. The other halides, on the other hand, showed a negative influence on the H2O2 formation by promoting the H2 combustion to water and/or by increasing the rate of decomposition/hydrogenation of H2O2 over the catalyst. An optimum concentration of Br ions in the reaction medium or in the catalyst was found to be crucial for obtaining the higher H2O2 yield in the direct synthesis.  相似文献   

3.
Pristine and vanadium-doped In2O3 nanofibers were fabricated by electrospinning and their sensing properties to H2S gas were studied. X-ray diffractometry (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to investigate the inner structure and the surface morphology. The H2S-sensing performances were characterized at different temperatures ranging from 50 to 170 °C. The sensor based on 6 mol% V-doped In2O3 nanofibers exhibit the highest response, i.e. 13.9–50 ppm H2S at the relatively low temperature of 90 °C. In addition, the fast response (15 s) and recovery (18 s) time, and good selectivity were observed.  相似文献   

4.
Scanning electron microscopy, X-ray diffraction and electrochemical measurement technique were applied to investigate the corrosion of SM 80SS tube steel in stimulant solution with carbon dioxide (CO2) and hydrogen sulfide (H2S) at variable conditions of PCO2/PH2S and temperature. The results suggest that there exists a synergism of sweet corrosion and sour corrosion on the steel surface, corrosion attack increases in the initial stage and then decrease with the increase of PCO2 or PH2S; serious corrosion occurs in the PCO2/PH2S ranged from 31 to 520. In addition, the fitted parabola function equation Y = 0.47873 + 0.04014X - (3.23788E−5)X2 is established, and the most serious corrosion is 600 for PCO2/PH2S. Under the moderate contents of PCO2 and PH2S, the corrosion scale consists of FeS0.9 and FeCO3; for relatively high PH2S, additive product FeS comes into being at high temperature such as T = 150 °C, product FeO(OH) is found in the corrosion scale. The H2S corrosion has a significant effect on the whole reaction process and iron sulfide is superior to precipitating on the steel surface compared with iron carbonate. In addition, the surface scales of iron sulfide almost act as a diffusion barrier and inhibit the corrosion by a coverage effect strongly depending on H2S concentration by EIS measurement.  相似文献   

5.
The present work is an investigation of how the process conditions influence the synthesis of mixed alcohols from syngas over a K2CO3/Co/MoS2/C catalyst. The emphasis in the investigations is upon the effects of H2S in the syngas feed. However the effects of the temperature and of the partial pressures of H2 and CO are also investigated. With or without H2S in the feed the pre-sulfided catalyst requires an initiation period to reach a stabilized behavior, but the duration of this period depends upon the H2S level. Operation with a feed containing more than 103 ppmv H2S leads to a fairly rapid stabilization of the product distribution and ensures that higher alcohols are the dominant reaction products. With less than 57 ppmv H2S in the feed the stabilization of the product distribution is much slower, and methanol is the dominant product. An investigation of the reaction kinetics indicates a high CO coverage and low hydrogen coverage. Hydrogen sulfide in the syngas feed generally promotes chain growth for both alcohols and hydrocarbons, but lowers the alcohol selectivity by enhancing the hydrocarbon formation. The highest alcohol productivity reached in these investigations was 0.276 g/g cat./h, and this was achieved at 350 °C, 100 bar, GHSV = 5244 h−1, Feed: 49.9 vol% H2, 50.1 vol% CO. Finally it is found that sulfur fed to the reactor as H2S is incorporated into the condensed alcohol product, and the incorporation of sulfur species into the product continues for some time after H2S has been removed from the feed. When the catalyst is operated with an S-free syngas feed, the amount of sulfur in the condensed liquid product decreases over time, but after 35 h of operation with an S-free syngas the alcohol product still contains 340 ppmw of sulfur. Thiols appear to be the dominant sulfur compounds in the product.  相似文献   

6.
H2 regeneration of an activated carbon supported vanadium and cobalt oxides (V2O5-CoO/AC) catalyst–sorbent used for flue gas SO2 removal is studied in this paper. Elemental sulfur is produced during the H2-regeneration when effluent gas of the regeneration is recycled back to the reactor. The regeneration conditions affect the regeneration efficiency and the elemental sulfur yield. The regeneration efficiency is the highest at 330 °C, with SO2 as the product. The production of elemental sulfur occurs at 350 °C and higher with the highest elemental sulfur yield of 9.8 mg-S/g-Cat. at 380 °C. A lower effluent gas recycle rate is beneficial to elemental sulfur production. Intermittent H2 feeding strategy can be used to control H2S concentration in the gas phase and increase the elemental sulfur yield. Two types of reactions occur in the regeneration, reduction of sulfuric acid to SO2 by AC and reduction of SO2 to elemental sulfur through Claus reaction. H2S is an intermediate, which is important for elemental sulfur formation and for conversion of CoO to CoS that catalyzes the Claus reaction. The catalyst–sorbent exhibits good stability in SO2 removal capacity and in elemental sulfur yield.  相似文献   

7.
油气田CO2/H2S共存腐蚀与缓蚀技术研究进展   总被引:3,自引:0,他引:3  
CO2/H2S是油气田采集、运输、处理过程中主要的腐蚀介质,由其引起的管道设备的腐蚀问题变得越来越严重,腐蚀和防腐已经成为研究热点。分别对近年来国内外开展的有关CO2和H2S共存腐蚀及缓蚀技术的研究进行综述。CO2/H2S共存腐蚀研究主要依靠试验手段,但目前的研究结果有很大的离散性,根据不同的试验条件会产生不同的研究结果。分压比是国内外大多数学者研究CO2/H2S腐蚀规律的切入点,但关于两者主导腐蚀的分压比界限划分现有研究存有争议。缓蚀技术研究讨论了缓蚀剂作用机理,评述了抑制CO2/H2S共存腐蚀常用的酰胺类、咪唑啉衍生物类、季铵盐类和Schiff碱类缓性剂在国内外的研究与应用现状,展望了这一领域的研究前景及发展方向。  相似文献   

8.
Au nanoparticles (AuNPs) are good quenchers once they closely contact with luminophore. Here we reported a simple approach to obtain enhanced electrogenerated chemiluminescence (ECL) behavior based on Au/CdS nanocomposite films by adjusting the amount of AuNPs in the nanocomposite. The maximum enhancement factor of about 4 was obtained at an indium tin oxide (ITO) electrode in the presence of co-reactant H2O2. The mechanism of this enhancement was discussed in detail. The strong ECL emission from Au/CdS nanocomposites film was exploited to determine H2O2. The resulting ECL biosensors showed a linear response to the concentration of H2O2 ranging from 1.0 × 10−8 to 6.6 × 10−4 mol L−1 with a detection limit of 5 nmol L−1 (S/N = 3) and good stability and reproducibility.  相似文献   

9.
A model for H2O2 formation, transport, and reaction in PEMFCs is established for the first time. Profiles of oxygen and H2O2 concentration inside the fuel cell are simulated using the agglomerate model for the electrode. The predicted concentration of H2O2 shows the same trend as experimental data under different conditions, but the level was only of the same magnitude. Low humidity, high temperature, and high oxygen/hydrogen partial pressures were found to increase the concentration of H2O2. An increase in membrane thickness or metal ion contaminant level reduces the concentration of H2O2 in the membrane. Lowering the oxygen permeability in the ionomer is the most important and effective method to reduce the formation of H2O2. The simulation results also show little change in H2O2 concentration while operating the fuel cell above 0.6 V. Anodes designed with considerable thickness, high catalyst loadings and active areas can also help to suppress H2O2 formation. Finally, recommendations are made to mitigate the effects of H2O2 and prolong membrane lifetimes.  相似文献   

10.
Nanocrystalline In2O3-SnO2 thick films were fabricated using the screen-printing technique and their responses toward low concentrations of H2S in air (2-150 ppm) were tested at 28-150 °C. The amount of In2O3-loading was varied from 0 to 9 wt.% of SnO2 and superb sensing performance was observed for the sensor loaded with 7 wt.% In2O3, which might be attributed to the decreased crystallite size as well as porous microstructure caused by the addition of In2O3 to SnO2 without structural modification. The interfacial barriers between In2O3 and SnO2 might be another major factor. Typically, the response of 7 wt.% In2O3-loaded SnO2 sensor toward 100 ppm of H2S was 1481 at room temperature and 1921 at optimal operating temperature (40 °C) respectively, and showed fast and recoverable response with good reproducibility when operated at 70 °C, which are highly attractive for the practical application in low-temperature H2S detection.  相似文献   

11.
T. Uma 《Electrochimica acta》2007,52(24):6895-6900
The scope of the present work was to investigate and evaluate the electrochemical activity of H2/O2 fuel cells based on the influence of a heteropolyacid glass membrane with a Pt/C electrode at low temperature. A new trend of sol-gel derived PMA (H3PMo12O40) heteropolyacid-containing glass membranes inherent of a high proton conductivity and mechanical stability, was heat treated at 600 °C and implemented to H2/O2 fuel cell activities through electrochemical characterization. Significant research has been focused on the development of H2/O2 fuel cells using optimization of heteropolyacid glasses as electrolytes with Pt/C electrodes at 30 °C. A maximum power density of 23.9 mW/cm2 was attained for operation with hydrogen and oxygen, respectively, at 30 °C and 30% humidity with the PMA glass membranes (4-92-4 mol%). Impedance spectroscopy measurements were performed on a total ohmic cell resistance of a membrane-electrode-assembly (MEA) at the end of the experiment.  相似文献   

12.
Bin Wen 《Fuel》2002,81(14):1841-1846
The NO SCR (selective catalytic reduction) activity with H2 in the presence of excess O2 was investigated over Pd/MFI catalyst prepared by sublimation method. With GHSV=90?000 h−1, a very high steady-state conversion of NO to N2 (70%) is achieved at 100 °C. Significant reorganizations take place inside the catalyst upon its first contact with all reactants and products at the reaction temperature. Pd0, which has a significant role in the NO-H2-O2 reaction, is possibly the active site for NO reduction. The formation of Pd-β hydride deactivates the catalyst for NO reduction. Throughout the entire NO-H2-O2 reaction, no N2O or NO2 is formed; N2 is the only N-containing product. The presence of O2 inhibits the formation of undesirable NH3. The rate of the NO+H2 reaction is fast or comparable to that of the H2+O2 reaction. The oxidation of Pd0 and subsequent agglomeration of PdO are responsible for the decreased NO reduction activity at high temperature.  相似文献   

13.
Combined processes of biological anaerobic baffled reactor (ABR) and UV/H2O2 at a laboratory scale were studied to treat a synthetic slaughterhouse wastewater. In this study, the total organic carbon (TOC) loadings of 0.2-1.1 g/(L day) were used. The results revealed that combined processes had a higher efficiency to treat the synthetic slaughterhouse wastewater. Up to 95% TOC removal was obtained for an influent concentration of 973.3 mgTOC/L at the hydraulic retention time (HRT) of 3.8 days in the ABR and 3.6 h in the UV photoreactor. Meanwhile, up to 97.7% and 96.6% removal of chemical oxygen demand (COD) and 5-day carbonaceous biochemical oxygen demand (CBOD5) were observed in the ABR for the same influent concentration, respectively. Comparatively, for an influent concentration of 157.6 mgTOC/L, the UV/H2O2 process alone with the TOC loading of 0.06-1.9 g/(L h) was also studied, in which, up to 64.3%, 83.7%, and 84.3% of TOC, COD, and CBOD5 removal were observed, respectively, at the HRT of 2.5 h with hydrogen peroxide (H2O2) concentration of 529 mg/L. It was found that individual ABR and UV/H2O2 processes enhanced the biodegradability of the treated effluent by an increased CBOD5/COD ratio of 0.4 to 0.6. An optimum H2O2 dosage of 3.5 (mgH2O2)/(mgTOCin h) was also found for the UV/H2O2 process.  相似文献   

14.
2ZnO·3B2O3·3H2O is an industrially important zinc borate. Herein, 2ZnO·3B2O3·3H2O has been prepared via a rheological phase reaction method using zinc oxide and boric acid as starting materials. This route is facile and acceptable for green chemical synthesis, producing no pollution and giving a yield of near 100% of theoretical value. And in this method, the complete conversion of the starting materials can be achieved in the presence of only 0.04 mL water (one drop of water). The products have been characterized by X-ray powder diffraction (XRD), thermogravimetry (TG) and differential thermal analysis (DTA), scanning electron microscopy (SEM) and particle size distribution. The effects of experimental conditions on the products were investigated. The main factors that affect the formation of zinc borate are water volume, sealing state, reaction time and temperature.  相似文献   

15.
In this work, Ni(OH)2 nanoplates grown on the Cu substrate were synthesized and characterized by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Then a novel Cu-Ni(OH)2 modified glass carbon electrode (Cu-Ni(OH)2/GCE) was fabricated and evaluated by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and typical amperometric response (i-t) method. Exhilaratingly, the Cu-Ni(OH)2/GCE shows significant electrocatalytic activity toward the reduction of H2O2. At an applied potential of −0.1 V, the sensor produces an ultrahigh sensitivity of 408.1 μA mM−1 with a low detection limit of 1.5 μM (S/N = 3). The response time of the proposed electrode was less than 5 s. What's more, the proposed sensor displays excellent selectivity, good stability, and satisfying repeatability.  相似文献   

16.
Aimed at the problem of tubing corrosion in environment that containing hydrogen sulfide (H2S), carbon dioxide (CO2), and chlorides (Cl), the corrosion behaviour of two nickel based alloys (UNS 06985 and UNS 08825) in 15 wt%NaCl solution containing H2S/CO2 in high temperature and high pressure environment was investigated. The pitting corrosion behaviour of Ni-based alloys was studied in FeCl3·6H2O solution by means of polarisation curve and immersion tests. The scanning electron microscopy (SEM), energy disperse spectroscopy (EDS) was applied to analyse the microstructure and corrosion performance of the samples. The results showed that the pitting-resistant of nickel alloy UNS 06985 was superior to UNS 08825. With the rising of experimental temperature, the corrosion increased and some slight pitting attacks appeared on the surface of UNS 08825. The test temperature was the crucial factor that influenced not only the compactness and the growing rate of corrosion product scale, but also the corrosion rate of the alloys. Elemental sulfur is a strong oxidant, the presence of S0 leads to a serious localized corrosion. XRD showed that the corrosion films formed on nickel base alloys consisted of NiS, CrO3, and the oxides of Ni and Fe. The polarisation curves showed a different corrosion behaviour of two alloys, anodic curve of UNS 06985 has a wider passivation area, and there has higher transpassive potential.  相似文献   

17.
This work demonstrates that iron-enriched natural zeolitic volcanic tuff (Paglisa deposit, Cluj county, Transilvania, Romania) resulting from a previous use as adsorbent in wastewater treatment can be recycled into effective electrode modifier applied to the electrocatalytic detection of hydrogen peroxide. After physico-chemical characterization of tuff samples using various techniques such as chemical analysis, X-ray diffraction, scanning electron microscopy, infrared spectroscopy, BET analysis and X-ray photoelectron spectroscopy, the electrochemical response of the iron-enriched zeolites was studied on the basis of solid carbon paste electrodes modified with these samples. The results indicate that iron centers in the zeolite are electroactive and that they act as electrocatalysts in the voltammetric and amperometric detection of H2O2. Best performance was achieved in phosphate buffer at pH 7, showing a sensitivity of 0.57 mA M−1 cm−2, a detection limit down to 60 μM, and a linear domain up to 100 mM H2O2.  相似文献   

18.
The effect of temperature on reaction of H2S with carbon structures of a coke were studied in a fixed-bed quartz tube reactor coupled with two parallel detectors, flame photometric detector (FPD) and mass spectrum (MS). The uptake of H2S with the coke matrix was studied through a sulfur uptake/temperature programmed desorption process (SU/TPD) and a temperature programmed oxidation process (TPO). The results show that the sulfur imbibed by a demineralized coke at elevated temperatures is very stable, which can only be decomposed and released to gas phase under combustion conditions. The chemical imbibition of sulfur takes place at an elevated temperature. At relatively lower temperatures, H2S was adsorbed physically by the sample and then transformed to stable sulfur species. At higher temperatures, the chemical reactions between H2S and DM-Coke led to the formation of more stable sulfur-containing forms and consequently increased H2S uptake ability. This is essence of the temperature effect on the uptake of H2S by a de-mineralized coke. The irregular behavior with the temperature was caused by the different interactions.  相似文献   

19.
In this work, the corrosion behavior of SAE 1018 carbon steel in buffered acetic acid (HAc) solutions containing chlorides, with and without H2S, was studied. Polarization curves obtained by different electrochemical techniques, indicate negligible modification of anodic slopes when adding H2S; however, the cathodic branch is more sensitive showing an accelerated reduction reaction in the presence of H2S. Interface characterization was performed by electrochemical impedance technique (EIS) in the absence and presence of H2S and near to the corrosion potential (Ecorr). Analysis of results shows no film of corrosion products, since the impedance spectra characteristics indicate a great activity of steel in the solutions studied, with differences only at low frequencies. The adsorbed complexes formed in the solution containing HAc, acetate and chlorides control the corrosion process and prevent passive film formation, even in the presence of H2S.  相似文献   

20.
Numerous transition metal–carbon composite catalysts (M = V, Zn, Ni, Sn, Ce, Ba, Fe, Cu) have been synthesized and tested for electroreduction of O2 to H2O2, The activity and selectivity of all synthesized catalysts for electrosynthesis of H2O2 were determined by the rotating ring-disk electrode method in acidic and neutral electrolytes. The Co-based catalysts in general showed the highest activity towards H2O2 formation. Experiments with different loading contents of Co showed that the activation overpotential losses of oxygen reduction to H2O2 reduces as loading increases to about 4 wt% Co. Addition of Co beyond this level did not seem to impact the overpotential losses. The cobalt-based catalysts, were spray-coated onto 120 μm thick Toray® graphite substrates, and were studied in bulk electrolysis cells for up to 100 h at potentiostatic conditions (0.25 V vs. RHE) in pH 0, 3, and 7 electrolytes. At (25 °C and 1 bar) with a catalysts loading of about and using dissolved O2 in 0.5 M H2SO4, typical H2O2 electrosynthesis rates of about were reached with current efficiencies of about 85 ± 5% at 0.25 V (vs. RHE).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号