首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the reliability-based design optimization (RBDO) model, the mean values of uncertain system variables are usually applied as design variables, and the cost is optimized subject to prescribed probabilistic constraints as defined by a nonlinear mathematical programming problem. Therefore, a RBDO solution that reduces the structural weight in uncritical regions does not only provide an improved design but also a higher level of confidence in the design. In this paper, we present recent developments for the RBDO model relative to two points of view: reliability and optimization. Next, we develop several distributions for the hybrid method and the optimum safety factor methods (linear and nonlinear RBDO). Finally, we demonstrate the efficiency of our safety factor approach extended to nonlinear RBDO with application to a tri-material structure.  相似文献   

2.
Traditional reliability-based design optimization (RBDO) generally describes uncertain variables using random distributions, while some crucial distribution parameters in practical engineering problems can only be given intervals rather than precise values due to the limited information. Then, an important probability-interval hybrid reliability problem emerged. For uncertain problems in which interval variables are included in probability distribution functions of the random parameters, this paper establishes a hybrid reliability optimization design model and the corresponding efficient decoupling algorithm, which aims to provide an effective computational tool for reliability design of many complex structures. The reliability of an inner constraint is an interval since the interval distribution parameters are involved; this paper thus establishes the probability constraint using the lower bound of the reliability degree which ensures a safety design of the structure. An approximate reliability analysis method is given to avoid the time-consuming multivariable optimization of the inner hybrid reliability analysis. By using an incremental shifting vector (ISV) technique, the nested optimization problem involved in RBDO is converted into an efficient sequential iterative process of the deterministic design optimization and the hybrid reliability analysis. Three numerical examples are presented to verify the proposed method, which include one simple problem with explicit expression and two complex practical applications.  相似文献   

3.
In the engineering problems, the randomness and the uncertainties of the distribution of the structural parameters are a crucial problem. In the case of reliability-based design optimization (RBDO), it is the objective to play a dominant role in the structural optimization problem introducing the reliability concept. The RBDO problem is often formulated as a minimization of the initial structural cost under constraints imposed on the values of elemental reliability indices corresponding to various limit states. The classical RBDO leads to high computing time and weak convergence, but a Hybrid Method (HM) has been proposed to overcome these two drawbacks. As the hybrid method successfully reduces the computing time, we can increase the number of variables by introducing the standard deviations as optimization variables to minimize the error values in the probabilistic model. The efficiency of the hybrid method has been demonstrated on static and dynamic cases with extension to the variability of the probabilistic model. In this paper, we propose a modification on the formulation of the hybrid method to improve the optimal solutions. The proposed method is called, Improved Hybrid Method (IHM). The main benefit of this method is to improve the structure performance by much more minimizing the objective function than the hybrid method. It is also shown to demonstrate the optimality conditions. The improved hybrid method is next applied to two numerical examples, with consideration of the standard deviations as optimization variables (for linear and nonlinear distributions). When integrating the improved hybrid method within the probabilistic model variability, we minimize the objective function more and more.  相似文献   

4.
This study developed a reliability-based design optimization (RBDO) algorithm focusing on the ability of solving problems with nonlinear constraints or system reliability. In this case, a sampling technique is often adopted to evaluate the reliability analyses. However, simulation with an insufficient sample size often possesses statistical randomness resulting in an inaccurate sensitivity calculation. This may cause an unstable RBDO solution. The proposed approach used a set of deterministic variables, called auxiliary design points, to replace the random parameters. Thus, an RBDO is converted into a deterministic optimization (DO, α-problem). The DO and the analysis of finding the auxiliary design points (β-problem) are conducted iteratively until the solution converges. To maintain the stability of the RBDO solution with less computational cost, the proposed approach calculated the sensitivity of reliability (in the β-problem) with respect to the mean value of the pseudo-random parameters rather than the design variables. The stability of the proposed method was compared to that of the double-loop approach, and many factors, such as sample size, starting point and the parameters used in the optimization, were considered. The accuracy of the proposed method was confirmed using Monte Carlo simulation (MCS) with several linear and nonlinear numerical problems.  相似文献   

5.
The enhanced weighted simulation-based design method in conjunction with particle swarm optimization (PSO) is developed as a pseudo double-loop algorithm for accurate reliability-based design optimization (RBDO). According to this hybrid method, generated samples of weighed simulation method (WSM) are considered as initial population of the PSO. The proposed population is then employed to evaluate the safety level of each PSO swarm (design candidates) during movement. Using this strategy, there is no required to conduct new sampling for reliability assessment of design candidates (PSO swarms). Employing PSO as the search engine of RBDO and WSM as the reliability analyzer provide more accurate results with few samples and also increase the application range of traditional WSM. Besides, a shift strategy is also introduced to increase the capability of the WSM to investigate general RBDO problems including both deterministic and random design variables. Several examples are investigated to demonstrate the accuracy and robustness of the method. Results demonstrate the computational efficiency and superiority of the proposed method for practical engineering problems with highly nonlinear and implicit probabilistic constrains.  相似文献   

6.
Reliability-based design optimization (RBDO) incorporates probabilistic analysis into optimization process so that an optimum design has a great chance of staying in the feasible design space when the inevitable variability in design variables/parameters is considered. One of the biggest drawbacks of applying RBDO to practical problem is its high computational cost that is often impractical to industries. In search of the most suitable RBDO method for industrial applications, we first evaluated several existing RBDO approaches in details such as the double-loop RBDO, the sequential optimization and reliability assessment, and the response surface method. Then, based on industry needs, a platform incorporating/integrating the existing algorithm of optimization and reliability analysis is built for a practical RBDO problem. Effectiveness of the proposed RBDO approach is demonstrated using a simple cantilever beam problem and a more complicated industry problem.  相似文献   

7.
Conventional reliability-based design optimization (RBDO) approaches require high computing costs. Among the existing RBDO methods, the single loop single vector approach (SLSV) converts the RBDO problem into a single loop deterministic optimization. Hence, it can efficiently reduce the design cost compared to other methods. However, this method has a weakness in that instability or inaccuracy in convergence can be increased according to the problem characteristics. It often happens when the performance function is highly nonlinear or concave. In this study, a novel method is proposed to overcome the problems. It is an SLSV method using the conjugate gradient that is calculated with the gradient directions at the most probable points (MPP) of the previous cycles. Mathematical examples and structural applications are solved to verify the proposed method. The numerical performances of the proposed method are compared with other RBDO methods such as the RIA, PMA, SORA and SLSV approaches. It is shown that the SLSV method using the conjugate gradient (SLSVCG) is not greatly influenced by problem characteristics and the convergence capability is quite superior. Also, the computational cost of the proposed method is significantly reduced and an excellent solution satisfying the specified reliability is obtained.  相似文献   

8.
This paper presents a numerical investigation of the probabilistic approach in estimating the reliability of wire bonding, and develops a reliability-based design optimization Methodology (RBDO) for microelectronic device structures. The objective of the RBDO method is to design structures which should be both economical and reliable where the solution reduces the structural weight in uncritical regions. It does not only provide an improved design, but also a higher level of confidence in the design. The Finite element simulation model intends to analyze the sequence of the failure events in power microelectronic devices. This numerical model is used to estimate the probability of failure of power module regarding the wire bonding connection. However, due to time-consuming of the multiphysics finite element simulation, a response surface method is used to approximate the response output of the limit state, in this way the reliability analysis is performed directly to the response surface by using the First and the Second Order Reliability Methods FORM/SORM. Subsequently the reliability analysis is integrated in the optimization process to improve the performance and reliability of structural design of wire bonding. The sequential RBDO algorithm is used to solve this problem and to find the best structural designs which realize the best compromise between cost and safety.  相似文献   

9.
This paper presents an efficient reliability-based multidisciplinary design optimization (RBMDO) strategy. The conventional RBMDO has tri-level loops: the first level is an optimization in the deterministic space, the second one is a reliability analysis in the probabilistic space, and the third one is the multidisciplinary analysis. Since it is computationally inefficient when high-fidelity simulation methods are involved, an efficient strategy is proposed. The strategy [named probabilistic bi-level integrated system synthesis (ProBLISS)] utilizes a single-level reliability-based design optimization (RBDO) approach, in which the reliability analysis and optimization are conducted in a sequential manner by approximating limit state functions. The single-level RBDO is associated with the BLISS formulation to solve RBMDO problems. Since both the single-level RBDO and BLISS are mainly driven by approximate models, the accuracy of models can be a critical issue for convergence. The convergence of the strategy is guaranteed by employing the trust region–sequential quadratic programming framework, which validates approximation models in the trust region radius. Two multidisciplinary problems are tested to verify the strategy. ProBLISS significantly reduces the computational cost and shows stable convergence while maintaining accuracy.  相似文献   

10.
The application of reliability-based design optimization (RBDO) is hindered by the unbearable computational cost in the structure reliability evaluating process. This study proposes an optimal shifting vector (OSV) approach to enhance the efficiency of RBDO. In OSV, the idea of using an optimal shifting vector in the decoupled method and the notation of conducting reliability analysis in the super-sphere design space are proposed. The shifted limit state function, instead of the specific performance function, is used to identify the inverse most probable point (IMPP) and derive the optimal shifting vector for accelerating the optimization process. The super-sphere design space is applied to reduce the number of constraints and design variables for the novel reliability analysis model. OSV is very efficient for highly nonlinear problems, especially when the contour lines of the performance functions vary widely. The computation capability of the proposed method is demonstrated and compared to existing RBDO methods using four mathematical and engineering examples. The comparison results show that the proposed OSV approach is very efficient.  相似文献   

11.
The design of high technology structures aims to define the best compromise between cost and safety. The Reliability-Based Design Optimization (RBDO) allows us to design structures which satisfy economical and safety requirements. However, in practical applications, the coupling between the mechanical modelling, the reliability analyses and the optimization methods leads to very high computational time and weak convergence stability. Traditionally, the solution of the RBDO model is achieved by alternating reliability and optimization iterations. This approach leads to low numerical efficiency, which is disadvantageous for engineering applications on real structures. In order to avoid this difficulty, we propose herein a very efficient method based on the simultaneous solution of the reliability and optimization problems. The procedure leads to parallel convergence for both problems in a Hybrid Design Space (HDS). The efficiency of the proposed methodology is demonstrated on the design of a steel hook, where the RBDO is combined with Finite Element Analysis (FEA).  相似文献   

12.
Reliability-based design optimization (RBDO) is concerned with designing an engineering system to minimize a cost function subject to the reliability requirement that failure probability should not exceed a threshold. Conventional RBDO methods are less than satisfactory in dealing with discrete design parameters and complex limit state functions (nonlinear and non-differentiable). Methods that are flexible enough to address the concerns above, however, come at a high computational cost. To enhance computational efficiency without sacrificing model flexibility, we propose a new RBDO framework: PS2, which combines Particle Swarm Optimization (PSO), Support Vector Machine (SVM), and Subset Simulation (SS). SS can efficiently estimate small failure probabilities, based on which SVM is adopted to evaluate the reliability of candidate solutions using binary classification. PSO is employed to solve the discrete optimization problem. Primary emphasis is placed upon the cooperation between SVM and PSO. The cooperation is mutually beneficial since the SVM classifier helps PSO evaluate the feasibility of solutions with high efficiency while the optimal solutions obtained by PSO assist in retraining the SVM classifier to attain better accuracy. The PS2 framework is implemented to find the optimal design of a ten-bar truss, whose component sizes are selected from a commercial standard. The reliability constraints are non-differentiable with two failure modes: yield stress and buckling stress. The interactive process between PSO and SVM contributes greatly to the success of the PS2 framework. It is shown that in various trials the PS2 framework consistently outperforms both the double-loop and single-loop approaches in terms of computational efficiency, solution quality, and model flexibility.  相似文献   

13.
In the reliability-based design optimization (RBDO) process, surrogate models are frequently used to reduce the number of simulations because analysis of a simulation model takes a great deal of computational time. On the other hand, to obtain accurate surrogate models, we have to limit the dimension of the RBDO problem and thus mitigate the curse of dimensionality. Therefore, it is desirable to develop an efficient and effective variable screening method for reduction of the dimension of the RBDO problem. In this paper, requirements of the variable screening method for deterministic design optimization (DDO) and RBDO are compared, and it is found that output variance is critical for identifying important variables in the RBDO process. An efficient approximation method based on the univariate dimension reduction method (DRM) is proposed to calculate output variance efficiently. For variable screening, the variables that induce larger output variances are selected as important variables. To determine important variables, hypothesis testing is used in this paper so that possible errors are contained in a user-specified error level. Also, an appropriate number of samples is proposed for calculating the output variance. Moreover, a quadratic interpolation method is studied in detail to calculate output variance efficiently. Using numerical examples, performance of the proposed method is verified. It is shown that the proposed method finds important variables efficiently and effectively  相似文献   

14.
Reliability-based design optimization (RBDO) in practical applications is hindered by its huge computational cost during structure reliability evaluating process. Kriging-model-based RBDO is an effective method to overcome this difficulty. However, the accuracy of Kriging model depends directly on how to select the sample points. In this paper, the local adaptive sampling (LAS) is proposed to enhance the efficiency of constructing Kriging models for RBDO problems. In LAS, after initialization, new samples for probabilistic constraints are mainly selected within the local region around the current design point from each optimization iteration, and in the local sampling region, sample points are first considered to be located on the limit state constraint boundaries. The size of the LAS region is adaptively defined according to the nonlinearity of the performance functions. The computation capability of the proposed method is demonstrated using three mathematical RBDO problems and a honeycomb crash-worthiness design application. The comparison results show that the proposed method is very efficient.  相似文献   

15.
A method to carry out structural synthesis of deterministic linear dynamical systems under stochastic excitation is introduced. The structural optimization problem is written as a nonlinear mathematical programming problem with reliability constraints. Probability that design conditions are satisfied within a given time period is used as a measure of system reliability. The solution of the original optimization problem is replaced by the solution of a sequence of approximate sub-optimization problems. An explicit approximation of the system reliability in terms of the design variables is constructed in each sub-optimization problem. The approximations are locally adjusted to a reliability database, which is obtained by an efficient importance sampling technique. Each approximate optimization problem is solved in an efficient manner due to the availability of the system reliability in explicit form. Numerical examples are presented to illustrate the performance and efficiency of the proposed methodology.  相似文献   

16.
This study investigates efficient design optimization frameworks for composite structures with uncertainties related to material properties and loading. The integration of two decoupled reliability-based design optimization methodologies with a decoupled discrete material optimization is proposed to determine material and fiber orientation for three-dimensional composite structures. First, a deterministic and decoupled discrete material optimization is used for baseline comparison. The objective is to minimize the cost of composite structures with the design variables comprising of the piecewise patch orientations and material properties of the fiber reinforced composites. The reliability-based design optimization includes a hybrid method, and also the sequential optimization and reliability assessment method. In the sequential optimization and reliability assessment method, the inverse reliability analysis is evaluated using a stochastic response surface method and a first order reliability approach. Comparing the methods based on the optimal material and fiber orientations, the uncertainties in loads and material properties lead to different optimal layouts compared to the deterministic solutions. The numerical results also reveal that the hybrid method applied in reliability based designs results in negligible additional computational cost.  相似文献   

17.
Reliability-based design optimization (RBDO) is a methodology for finding optimized designs that are characterized with a low probability of failure. Primarily, RBDO consists of optimizing a merit function while satisfying reliability constraints. The reliability constraints are constraints on the probability of failure corresponding to each of the failure modes of the system or a single constraint on the system probability of failure. The probability of failure is usually estimated by performing a reliability analysis. During the last few years, a variety of different formulations have been developed for RBDO. Traditionally, these have been formulated as a double-loop (nested) optimization problem. The upper level optimization loop generally involves optimizing a merit function subject to reliability constraints, and the lower level optimization loop(s) compute(s) the probabilities of failure corresponding to the failure mode(s) that govern(s) the system failure. This formulation is, by nature, computationally intensive. Researchers have provided sequential strategies to address this issue, where the deterministic optimization and reliability analysis are decoupled, and the process is performed iteratively until convergence is achieved. These methods, though attractive in terms of obtaining a workable reliable design at considerably reduced computational costs, often lead to premature convergence and therefore yield spurious optimal designs. In this paper, a novel unilevel formulation for RBDO is developed. In the proposed formulation, the lower level optimization (evaluation of reliability constraints in the double-loop formulation) is replaced by its corresponding first-order Karush–Kuhn–Tucker (KKT) necessary optimality conditions at the upper level optimization. Such a replacement is computationally equivalent to solving the original nested optimization if the lower level optimization problem is solved by numerically satisfying the KKT conditions (which is typically the case). It is shown through the use of test problems that the proposed formulation is numerically robust (stable) and computationally efficient compared to the existing approaches for RBDO.  相似文献   

18.
Sequential optimization and reliability assessment (SORA) is one of the most popular decoupled approaches to solve reliability-based design optimization (RBDO) problem because of its efficiency and robustness. In SORA, the double loop structure is decoupled through a serial of cycles of deterministic optimization and reliability assessment. In each cycle, the deterministic optimization and reliability assessment are performed sequentially and the boundaries of violated constraints are shifted to the feasible direction according to the reliability information obtained in the previous cycle. In this paper, based on the concept of SORA, approximate most probable target point (MPTP) and approximate probabilistic performance measure (PPM) are adopted in reliability assessment. In each cycle, the approximate MPTP needs to be reserved, which will be used to obtain new approximate MPTP in the next cycle. There is no need to evaluate the performance function in the deterministic optimization since the approximate PPM and its sensitivity are used to formulate the linear Taylor expansion of the constraint function. One example is used to illustrate that the approximate MPTP will approach the accurate MPTP with the iteration. The design variables and the approximate MPTP converge simultaneously. Numerical results of several examples indicate the proposed method is robust and more efficient than SORA and other common RBDO methods.  相似文献   

19.

The efficiency and robustness of reliability techniques are important in reliability-based design optimization (RBDO). Commonly, advanced mean value (AMV) is utilized in reliability loop of RBDO but unstable solutions using AMV may be obtained for highly concave performance functions. Owing to the challenges of commonly reliability methods, the conjugate gradient analysis (CGA) is proposed as a robust methodology but it shows inefficient results for convex constraints. In this research, hybrid conjugate mean value (HCMV) method is proposed using sufficient condition for the enhancement of efficiency and robustness of RBDO. The CGA and AMV are dynamically utilized for simple solution of convex/concave constraints using sufficient descent criterion in HCMV. The HCMV is used to evaluate the convergence performances and is compared with numerous existing reliability methods through three reliability problems (two concave/convex mathematical examples and one applicable structure) and four RBDO problems. From the numerical results, the HCMV exhibited the better efficiency, and robustness compared to other studied formulations in reliability and RBDO problems.

  相似文献   

20.
This paper presents a single-loop algorithm for system reliability-based topology optimization (SRBTO) that can account for statistical dependence between multiple limit-states, and its applications to computationally demanding topology optimization (TO) problems. A single-loop reliability-based design optimization (RBDO) algorithm replaces the inner-loop iterations to evaluate probabilistic constraints by a non-iterative approximation. The proposed single-loop SRBTO algorithm accounts for the statistical dependence between the limit-states by using the matrix-based system reliability (MSR) method to compute the system failure probability and its parameter sensitivities. The SRBTO/MSR approach is applicable to general system events including series, parallel, cut-set and link-set systems and provides the gradients of the system failure probability to facilitate gradient-based optimization. In most RBTO applications, probabilistic constraints are evaluated by use of the first-order reliability method for efficiency. In order to improve the accuracy of the reliability calculations for RBDO or RBTO problems with high nonlinearity, we introduce a new single-loop RBDO scheme utilizing the second-order reliability method and implement it to the proposed SRBTO algorithm. Moreover, in order to overcome challenges in applying the proposed algorithm to computationally demanding topology optimization problems, we utilize the multiresolution topology optimization (MTOP) method, which achieves computational efficiency in topology optimization by assigning different levels of resolutions to three meshes representing finite element analysis, design variables and material density distribution respectively. The paper provides numerical examples of two- and three-dimensional topology optimization problems to demonstrate the proposed SRBTO algorithm and its applications. The optimal topologies from deterministic, component and system RBTOs are compared with one another to investigate the impact of optimization schemes on final topologies. Monte Carlo simulations are also performed to verify the accuracy of the failure probabilities computed by the proposed approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号