首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In this paper an evolutionary classifier fusion method inspired by biological evolution is presented to optimize the performance of a face recognition system. Initially, different illumination environments are modeled as multiple contexts using unsupervised learning and then the optimized classifier ensemble is searched for each context using a Genetic Algorithm (GA). For each context, multiple optimized classifiers are searched; each of which are referred to as a context based classifier. An evolutionary framework comprised of a combination of these classifiers is then applied to optimize face recognition as a whole. Evolutionary classifier fusion is compared with the simple adaptive system. Experiments are carried out using the Inha database and FERET database. Experimental results show that the proposed evolutionary classifier fusion method gives superior performance over other methods without using evolutionary fusion. Recommended by Guest Editor Daniel Howard. This work was supported by INHA UNIVERSITY Research Grant. Zhan Yu received the B.E. degree in Software Engineering from Xiamen University, China, in 2008. He is currently a master student in Intelligent Technology Lab, Computer and Information Department, Inha University, Korea. He has research interests in image processing, pattern recognition, computer vision, machine learning and statistical inference and computating. Mi Young Nam received the B.Sc. and M.Sc. degrees in Computer Science from the University of Silla Busan, Korea in 1995 and 2001 respectively and the Ph.D. degree in Computer Science & Engineering from the University of Inha, Korea in 2006. Currently, She is Post-Doctor course in Intelligent Technology Laboratory, Inha University, Korea. She’s research interest includes biometrics, pattern recognition, computer vision, image processing. Suman Sedai received the M.S. degree in Software Engineering from Inha University, China, in 2008. He is currently a Doctoral course in Western Australia University, Australia. He has research interests in image processing, pattern recognition, computer vision, machine learning. Phill Kyu Rhee received the B.S. degree in Electrical Engineering from the Seoul University, Seoul, Korea, the M.S. degree in Computer Science from the East Texas State University, Commerce, TX, and the Ph.D. degree in Computer Science from the University of Louisiana, Lafayette, LA, in 1982, 1986, and 1990 respectively. During 1982–1985 he was working in the System Engineering Research Institute, Seoul, Korea as a research scientist. In 1991 he joined the Electronic and Telecommunication Research Institute, Seoul, Korea, as a Senior Research Staff. Since 1992, he has been an Associate Professor in the Department of Computer Science and Engineering of the Inha University, Incheon, Korea and since 2001, he is a Professor in the same department and university. His current research interests are pattern recognition, machine intelligence, and parallel computer architecture. dr. rhee is a Member of the IEEE Computer Society and KISS (Korea Information Science Society).  相似文献   

3.
In this paper, it is presented a novel approach for the self-sustained resonant accelerometer design, which takes advantages of an automatic gain control in achieving stabilized oscillation dynamics. Through the proposed system modeling and loop transformation, the feedback controller is designed to maintain uniform oscillation amplitude under dynamic input accelerations. The fabrication process for the mechanical structure is illustrated in brief. Computer simulation and experimental results show the feasibility of the proposed accelerometer design, which is applicable to a control grade inertial sense system. Recommended by Editorial Board member Dong Hwan Kim under the direction of Editor Hyun Seok Yang. This work was supported by the BK21 Project ST·IT Fusion Engineering program in Konkuk University, 2008. This work was supported by the Korea Foundation for International Cooperation of Science & Technology(KICOS) through a grant provided by the Korean Ministry of Education, Science & Technology(MEST) in 2008 (No. K20601000001). Authors also thank to Dr. B.-L. Lee for the help in structure manufacturing. Sangkyung Sung is an Assistant Professor of the Department of Aerospace Engineering at Konkuk University, Korea. He received the M.S and Ph.D. degrees in Electrical Engineering from Seoul National University in 1998 and 2003, respectively. His research interests include inertial sensors, avionic system hardware, navigation filter, and intelligent vehicle systems. Chang-Joo Kim is an Assistant Professor of the Department of Aerospace Engineering at Konkuk University, Korea. He received the Ph.D. degree in Aeronautical Engineering from Seoul National University in 1991. His research interests include nonlinear optimal control, helicopter flight mechanics, and helicopter system design. Young Jae Lee is a Professor of the Department of Aerospace Engineering at Konkuk University, Korea. He received the Ph.D. degree in Aerospace Engineering from the University of Texas at Austin in 1990. His research interests include integrity monitoring of GNSS signal, GBAS, RTK, attitude determination, orbit determination, and GNSS related engineering problems. Jungkeun Park is an Assistant Professor of the Department of Aerospace Engineering at Konkuk University. Dr. Park received the Ph.D. in Electrical Engineering and Computer Science from the Seoul National University in 2004. His current research interests include embedded real-time systems design, real-time operating systems, distributed embedded real-time systems and multimedia systems. Joon Goo Park is an Assistant Professor of the Department of Electronic Engineering at Gyung Book National University, Korea. He received the Ph.D. degree in School of Electrical Engineering from Seoul National University in 2001. His research interests include mobile navigation and adaptive control.  相似文献   

4.
Due to recent rapid deployment of Internet Appliances and PostPC products, the importance of developing lightweight embedded operating system is being emphasized more. In this article, we like to present the details of design and implementation experience of low cost embedded system, Zikimi, for multimedia data processing. We use the skeleton of existing Linux operating system and develop a micro-kernel to perform a number of specific tasks efficiently and effectively. Internet Appliances and PostPC products usually have very limited amount of hardware resources to execute very specific tasks. We carefully analyze the system requirement of multimedia processing device. Weremove the unnecessary features, e.g. virtual memory, multitasking, a number of different file systems, and etc. The salient features of Zikimi micro kernel are (i) linear memory system and (ii) user level control of I/O device. The result of performance experiment shows that LMS (linear memory system) of Zikimi micro kernel achieves significant performance improvement on memory allocationagainst legacy virtual memory management system of Linux. By exploiting the computational capability of graphics processor and its local memory, we achieve 2.5 times increase in video processing speed. Supported by KOSEF through Statistical Research Center for Complex Systems at Seoul National University. Funded by Faculty Research Institute Program 2001, Sahmyook University, Korea. Sang-Yeob Lee received his B.S. and M.S degree from Hanyang University, seoul, Korea in 1995. He is currently working towards the Ph.D. degree in Devision of Electrical and Computer Engineering, Hanyang University, Seoul, Korea. Since 1998, he has been on the faculty of Information Management System at Sahmyook university, Seoul, Korea. His research interests include robot vision systems, pattern recognition, Multimedia systems. He is a member of IEEE. Youjip Won received the B.S and M.S degree in Computer Science from the Department of Computer Science, Seoul National University, Seoul, Korea in 1990 and 1992, respectively and the Ph.D. in Computer Science from the University of Minnesota, Minneapolis in 1997. After finishing his Ph.D., He worked as Server Performance Analysts at Server Architecture Lab., Intel Corp. Since 1999, he has been on the board of faculty members in Division of Electrical and Computer Engineering, Hanyang University, Seoul, Korea. His current research interests include Multimedia Systems, Internet Technology, Database and Performance Modeling and Analysis. He is a member of ACM and IEEE. Whoi-Yul Kim received his B.S. degree in Electronic Engineering from Hanyang University, Seoul, Korea in 1980. He received his M.S. from Pennsylvania State University, University Park, in 1983 and his Ph.D. from Purdue University, West Lafayette, in 1989, both in Electrical Engineering. From 1989 to 1994, he was with the Erick Jonsson School of Engineering and Computer Science at the University of Texas at Dallas. Since 1994, he has been on the faculty of Electronic Engineering at Hanyang University, Seoul, Korea. He has been involved with research development of various range sensors and their use in robot vision systems. Recently, his work has focused on content-based image retrieval system. He is a member of IEEE.  相似文献   

5.
In this paper, we propose a new topology called theDual Torus Network (DTN) which is constructed by adding interleaved edges to a torus. The DTN has many advantages over meshes and tori such as better extendibility, smaller diameter, higher bisection width, and robust link connectivity. The most important property of the DTN is that it can be partitioned into sub-tori of different sizes. This is not possible for mesh and torus-based systems. The DTN is investigated with respect to allocation, embedding, and fault-tolerant embedding. It is shown that the sub-torus allocation problem in the DTN reduces to the sub-mesh allocation problem in the torus. With respect to embedding, it is shown that a topology that can be embedded into a mesh with dilation δ can also be embedded into the DTN with less dilation. In fault-tolerant embedding, a fault-tolerant embedding method based on rotation, column insertion, and column skip is proposed. This method can embed any rectangular grid into its optimal square DTN when the number of faulty nodes is fewer than the number of unused nodes. In conclusion, the DTN is a scalable topology well-suited for massively parallel computation. Sang-Ho Chae, M.S.: He received the B.S. in the Computer Science and Engineering from the Pohang University of Science and Technology (POSTECH) in 1994, and the M.E. in 1996. Since 1996, he works as an Associate Research Engineer in the Central R&D Center of the SK Telecom Co. Ltd. He took part in developing SK Telecom Short Message Server whose subscribers are now over 3.5 million and Advanced Paging System in which he designed and implemented high availability concepts. His research interests are the Fault Tolerance, Parallel Processing, and Parallel Topolgies. Jong Kim, Ph.D.: He received the B.S. degree in Electronic Engineering from Hanyang University, Seoul, Korea, in 1981, the M.S. degree in Computer Science from the Korea Advanced Institute of Science and Technology, Seoul, Korea, in 1983, and the Ph.D. degree in Computer Engineering from Pennsylvania State University, U.S.A., in 1991. He is currently an Associate Professor in the Department of Computer Science and Engineering, Pohang University of Science and Technology, Pohang, Korea. Prior to this appointment, he was a research fellow in the Real-Time Computing Laboratory of the Department of Electrical Engineering and Computer Science at the University of Michigan from 1991 to 1992. From 1983 to 1986, he was a System Engineer in the Korea Securities Computer Corporation, Seoul, Korea. His major areas of interest are Fault-Tolerant Computing, Performance Evaluation, and Parallel and Distributed Computing. Sung Je Hong, Ph.D.: He received the B.S. degree in Electronics Engineering from Seoul National University, Korea, in 1973, the M.S. degree in Computer Science from Iowa State University, Ames, U.S.A., in 1979, and the Ph.D. degree in Computer Science from the University of Illinois, Urbana, U.S.A., in 1983. He is currently a Professor in the Department of Computer Science and Engineering, Pohang University of Science and Technology, Pohang, Korea. From 1983 to 1989, he was a staff member of Corporate Research and Development, General Electric Company, Schenectady, NY, U.S.A. From 1975 to 1976, he was with Oriental Computer Engineering, Korea, as a Logic Design Engineer. His current research interest includes VLSI Design, CAD Algorithms, Testing, and Parallel Processing. Sunggu Lee, Ph.D.: He received the B.S.E.E. degree with highest distinction from the University of Kansas, Lawrence, in 1985 and the M.S.E. and Ph.D. degrees from the University of Michigan, Ann Arbor, in 1987 and 1990, respectively. He is currently an Associate Professor in the Department of Electronic and Electrical Engineering at the Pohang University of Science and Technology (POSTECH), Pohang, Korea. Prior to this appointment, he was an Associate Professor in the Department of Electrical Engineering at the University of Delaware in Newark, Delaware, U.S.A. From June 1997 to July 1998, he spent one year as a Visiting Scientist at the IBM T. J. Watson Research Center. His research interests are in Parallel, Distributed, and Fault-Tolerant Computing. Currently, his main research focus is on the high-level and low-level aspects of Inter-Processor Communications for Parallel Computers.  相似文献   

6.
This paper proposes a method for robust reduced-order H filter design for polytopic uncertain systems, using linear matrix inequalities (LMIs). Sufficient LMI conditions for both robust full- and reduced-order H filter design are derived. Convex optimization problems are formulated and solved to obtain optimal H filters by using the resulting LMI conditions. The resulting conditions do not involve any non-convex rank constraints, and thus the proposed method for H filter design guarantees global optimum solutions. Numerical examples are presented to show the effectiveness of the proposed method. Recommended by Editorial Board member Huanshui Zhang under the direction of Editor Young Il Lee. This work was supported by the Brain Korea 21 Project and the Basic Research Program of the Korea Science and Engineering Foundation under grant R01-2006-000-11373-0. Hyoun-Chul Choi received the B.S., M.S., and Ph.D. degrees in Control and Instrumentation Engineering from Ajou University, Suwon, Korea, in 1995, 1997, and 2006, respectively. He was a Visiting Researcher at Griffith University, Brisbane, Australia, from 2001 to 2002, and a Postdoctoral researcher at Ajou University, Suwon, Korea, from 2006 to 2007. Since 2008, he has been with ASRI, School of Electrical Engineering and Computer Science, Seoul National University, Seoul, Korea, where he is currently a Postdoctoral Researcher. His research interests include LMI-based control, optimal and robust control, network-based control, and mechatronics. Dongkyoung Chwa received the B.S. and M.S. degrees from the Department of Control and Instrumentation Engineering in 1995 and 1997, respectively, and the Ph.D. degree from the School of Electrical and Computer Engineering in 2001, all from Seoul National University, Seoul, Korea. From 2001 to 2003, he was a Postdoctoral Researcher with Seoul National University. In 2003, he was a Visiting Research Fellow at The University of New South Wales, Australian Defence Force Academy, and was the Honorary Visiting Academic at the University of Melbourne, Melbourne, Australia. In 2004, he was a BK21 Assistant Professor with Seoul National University. Since 2005, he has been an Assistant Professor with the Department of Electrical and Computer Engineering, Ajou University, Suwon, Korea. His research interests are nonlinear, robust, and adaptive control theories and their applications to the robotics, underactuated systems including wheeled mobile robots, underactuated ships, cranes, and guidance and control of flight systems. Suk-Kyo Hong received the B.S., M.S., and Ph.D. degrees in Electrical Engineering from Seoul National University, Seoul, Korea, in 1971, 1973, and 1981, respectively. His major graduate research works were centered on speed control of induction motors. He was an Exchange Professor at Rensselaer Polytechnic Institute, Troy, NY, from 1982 to 1983, and at the Institut National de Recherche en Informatique et en Automatique, France, from 1988 to 1989. He has been with the faculty of the Department of Electrical and Computer Engineering, Ajou University, Suwon, Korea, since 1976, and was a Visiting Professor at Griffith University, Australia, in 2001 and 2002. His current research interests include robust robot control, microprocessor applications, factory automation, and computer integrated manufacturing.  相似文献   

7.
This paper presents a decentralized adaptive backstepping controller to dampen oscillations and improve the transient stability to parametric uncertainties in multimachine power systems. The proposed design on the i th synchronous generator uses only local information and operates without the need for remote signals from the other generators. The design of the nonlinear controller is based on a modified fourth-order nonlinear model of a synchronous generator, and the automatic voltage regulator model is considered so as to decrease the steady state voltage error. The construction of both the control law and the associated Lyapunov function is systematically designed within the design methodology. A 3-machine power system is used to demonstrate the effectiveness of the proposed controller over two other controllers, namely a conventional damping controller (power system stabilizer) and one designed using the feedback linearization techniques. Recommended by Editorial Board member Gang Tao under the direction of Editor Jae Weon Choi. This work was supported by the Korea Electrical Engineering and Science Research Institute, which is funded by Ministry of Commerce, Industry and Energy. Shan-Ying Li received the B.S. degrees in Computer Science and M.S. degree in Electrical Engineering from Northeast DianLi University, China, in 1997 and 2002, respectively. She obtained the Ph.D. degree in Electrical Engineering from Seoul National University, Korea, in 2008. She is a Post Doctor in North China Electric Power Research Institute, North China Grid Co., Ltd., China. Her research interests are in the areas of advanced control and stability applications on power systems. Sang-Seung Lee received the M.S.E.E. and Ph.D. degrees in Electrical Engineering at Seoul National University. Currently, he is with Power System Research Division of KESRI, Seoul National University, Korea. His interest areas are nonlinear/adaptive control theory, North-East Asia power system interconnection, distributed/small generation, distributed transmission/distribution load flow algorithm, regional/local energy system, PSS (power system stabilizer), and RCM (Reliability Centered Maintenance). Yong Tae Yoon was born in Korea on April 20, 1971. He received the B.S. degree, M.Eng. and Ph.D. degrees from M.I.T., USA in 1995, 1997, and 2001, respectively. Currently, he is an Assistant Professor in the School of Electrical Engineering and Computer Science at Seoul National University, Korea. His special field of interest includes electric power network economics, power system reliability, and the incentive regulation of independent transmission companies. Jong-Keun Park received the B.S. degree in Electrical Engineering from Seoul National University, Seoul, Korea in 1973 and the M.S. and Ph.D. degrees in Electrical Engineering from The University of Tokyo, Japan in 1979 and 1982, respectively. He is currently a Professor of School of Electrical Engineering, Seoul National University. In 1992, he attended as a Visiting Professor at Technology and Policy Program and Laboratory for Electromagnetic and Electronic Systems, Massachusetts Institute of Technology. He is a Senior Member of the IEEE, a Fellow of the IEE, and a Member of Japan Institute of Electrical Engineers (JIEE).  相似文献   

8.
This paper presents two types of nonlinear controllers for an autonomous quadrotor helicopter. One type, a feedback linearization controller involves high-order derivative terms and turns out to be quite sensitive to sensor noise as well as modeling uncertainty. The second type involves a new approach to an adaptive sliding mode controller using input augmentation in order to account for the underactuated property of the helicopter, sensor noise, and uncertainty without using control inputs of large magnitude. The sliding mode controller performs very well under noisy conditions, and adaptation can effectively estimate uncertainty such as ground effects. Recommended by Editorial Board member Hyo-Choong Bang under the direction of Editor Hyun Seok Yang. This work was supported by the Korea Research Foundation Grant (MOEHRD) KRF-2005-204-D00002, the Korea Science and Engineering Foundation(KOSEF) grant funded by the Korea government(MOST) R0A-2007-000-10017-0 and Engineering Research Institute at Seoul National University. Daewon Lee received the B.S. degree in Mechanical and Aerospace Engineering from Seoul National University (SNU), Seoul, Korea, in 2005, where he is currently working toward a Ph.D. degree in Mechanical and Aerospace Engineering. He has been a member of the UAV research team at SNU since 2005. His research interests include applications of nonlinear control and vision-based control of UAV. H. Jin Kim received the B.S. degree from Korea Advanced Institute of Technology (KAIST) in 1995, and the M.S. and Ph.D. degrees in Mechanical Engineering from University of California, Berkeley in 1999 and 2001, respectively. From 2002–2004, she was a Postdoctoral Researcher and Lecturer in Electrical Engineering and Computer Science (EECS), University of California, Berkeley (UC Berkeley). From 2004–2009, she was an Assistant Professor in the School of in Mechanical and Aerospace Engineering at Seoul National University (SNU), Seoul, Korea, where she is currently an Associate Professor. Her research interests include applications of nonlinear control theory and artificial intelligence for robotics, motion planning algorithms. Shankar Sastry received the B.Tech. degree from the Indian Institute of Technology, Bombay, in 1977, and the M.S. degree in EECS, the M.A. degree in mathematics, and the Ph.D. degree in EECS from UC Berkeley, in 1979, 1980, and 1981, respectively. He is currently Dean of the College of Engineering at UC Berkeley. He was formerly the Director of the Center for Information Technology Research in the Interest of Society (CITRIS). He served as Chair of the EECS Department from January, 2001 through June 2004. In 2000, he served as Director of the Information Technology Office at DARPA. From 1996 to 1999, he was the Director of the Electronics Research Laboratory at Berkeley (an organized research unit on the Berkeley campus conducting research in computer sciences and all aspects of electrical engineering). He is the NEC Distinguished Professor of Electrical Engineering and Computer Sciences and holds faculty appointments in the Departments of Bioengineering, EECS and Mechanical Engineering. Prior to joining the EECS faculty in 1983 he was a Professor with the Massachusetts Institute of Technology (MIT), Cambridge. He is a member of the National Academy of Engineering and Fellow of the IEEE.  相似文献   

9.
In this paper,a noverl technique adopted in HarkMan is introduced.HarkMan is a keywore-spotter designed to automatically spot the given words of a vocabulary-independent task in unconstrained Chinese telephone speech.The speaking manner and the number of keywords are not limited.This paper focuses on the novel technique which addresses acoustic modeling,keyword spotting network,search strategies,robustness,and rejection.The underlying technologies used in HarkMan given in this paper are useful not only for keyword spotting but also for continuous speech recognition.The system has achieved a figure-of-merit value over 90%.  相似文献   

10.
Timing constraints for radar tasks are usually specified in terms of the minimum and maximum temporal distance between successive radar dwells. We utilize the idea of feasible intervals for dealing with the temporal distance constraints. In order to increase the freedom that the scheduler can offer a high-level resource manager, we introduce a technique for nesting and interleaving dwells online while accounting for the energy constraint that radar systems need to satisfy. Further, in radar systems, the task set changes frequently and we advocate the use of finite horizon scheduling in order to avoid the pessimism inherent in schedulers that assume a task will execute forever. The combination of feasible intervals and online dwell packing allows modular schedule updates whereby portions of a schedule can be altered without affecting the entire schedule, hence reducing the complexity of the scheduler. Through extensive simulations we validate our claims of providing greater scheduling flexibility without compromising on performance when compared with earlier work based on templates constructed offline. We also evaluate the impact of two parameters in our scheduling approach: the template length (or the extent of dwell nesting and interleaving) and the length of the finite horizon. Sathish Gopalakrishnan is a visting scholar in the Department of Computer Science, University of Illinois at Urbana-Champaign, where he defended his Ph.D. thesis in December 2005. He received an M.S. in Applied Mathematics from the University of Illinois in 2004 and a B.E. in Computer Science and Engineering from the University of Madras in 1999. Sathish’s research interests concern real-time and embedded systems, and the design of large-scale reliable systems. He received the best student paper award for his work on radar dwell scheduling at the Real-Time Systems Symposium 2004. Marco Caccamo graduated in computer engineering from the University of Pisa in 1997 and received the Ph.D. degree in computer engineering from the Scuola Superiore S. Anna in 2002. He is an Assistant Professor of the Department of Computer Science at the University of Illinois. His research interests include real-time operating systems, real-time scheduling and resource management, wireless sensor networks, and quality of service control in next generation digital infrastructures. He is recipient of the NSF CAREER Award (2003). He is a member of ACM and IEEE. Chi-Sheng Shih is currently an assistant professor at the Graduate Institute of Networking and Multimedia and Department of Computer Science and Information Engineering at National Taiwan University since February 2004. He received the B.S. in Engineering Science and M.S. in Computer Science from National Cheng Kung University in 1993 and 1995, respectively. In 2003, he received his Ph.D. in Computer Science from the University of Illinois at Urbana-Champaign. His main research interests are embedded systems, hardware/software codesign, real-time systems, and database systems. Specifically, his main research interests focus on real-time operating systems, real-time scheduling theory, embedded software, and software/hardware co-design for system-on-a-chip. Chang-Gun Lee received the B.S., M.S. and Ph.D. degrees in computer engineering from Seoul National University, Korea, in 1991, 1993 and 1998, respectively. He is currently an Assistant Professor in the Department of Electrical Engineering, Ohio State University, Columbus. Previously, he was a Research Scientist in the Department of Computer Science, University of Illinois at Urbana-Champaign from March 2000 to July 2002 and a Research Engineer in the Advanced Telecomm. Research Lab., LG Information & Communications, Ltd. from March 1998 to February 2000. His current research interests include real-time systems, complex embedded systems, QoS management, and wireless ad-hoc networks. Chang-Gun Lee is a member of the IEEE Computer Society. Lui Sha graduated with the Ph.D. degree from Carnegie-Mellon University in 1985. He was a Member and then a Senior Member of Technical Staff at Software Engineering Institute (SEI) from 1986 to 1998. Since Fall 1998, he has been a Professor of Computer Science at the University of Illinois at Urbana Champaign, and a Visiting Scientist of the SEI. He was the Chair of IEEE Real Time Systems Technical Committee from 1999 to 2000, and has served on its Executive Committee since 2001. He was a member of National Academy of Science’s study group on Software Dependability and Certification from 2004 to 2005, and is an IEEE Distinguished Visitor (2005 to 2007). Lui Sha is a Fellow of the IEEE and the ACM.  相似文献   

11.
Multicast offers an efficient means of distributing video contents/programs to multiple clients by batching their requests and then having them share a server‘s video stream.Batching customers‘ requests is either client-initiated or server-initiated.Most anvanced client-initiated video multicasts are implemented by patching.Periodic broadcast,a typical server-initiated approach,can be entirety-based or segment-based.This paper focuses on the performance of the VoD service for popular videos.First,we analyze the limitation of conventional patching when the customer request rate is high.Then,By combining the advantages of each of the two broadcast schemes,we propose a hybrid broadcast scheme for popular videos ,which not only lowers the serviec latency but also improves clients‘ interactivity by using an active buffering technique ,This is shown to be a good compromise for both lowering service latency and improving the VCR-like interactivity.  相似文献   

12.
Information service plays a key role in grid system, handles resource discovery and management process. Employing existing information service architectures suffers from poor scalability, long search response time, and large traffic overhead. In this paper, we propose a service club mechanism, called S-Club, for efficient service discovery. In S-Club, an overlay based on existing Grid Information Service (GIS) mesh network of CROWN is built, so that GISs are organized as service clubs. Each club serves for a certain type of service while each GIS may join one or more clubs. S-Club is adopted in our CROWN Grid and the performance of S-Club is evaluated by comprehensive simulations. The results show that S-Club scheme significantly improves search performance and outperforms existing approaches. Chunming Hu is a research staff in the Institute of Advanced Computing Technology at the School of Computer Science and Engineering, Beihang University, Beijing, China. He received his B.E. and M.E. in Department of Computer Science and Engineering in Beihang University. He received the Ph.D. degree in School of Computer Science and Engineering of Beihang University, Beijing, China, 2005. His research interests include peer-to-peer and grid computing; distributed systems and software architectures. Yanmin Zhu is a Ph.D. candidate in the Department of Computer Science, Hong Kong University of Science and Technology. He received his B.S. degree in computer science from Xi’an Jiaotong University, Xi’an, China, in 2002. His research interests include grid computing, peer-to-peer networking, pervasive computing and sensor networks. He is a member of the IEEE and the IEEE Computer Society. Jinpeng Huai is a Professor and Vice President of Beihang University. He serves on the Steering Committee for Advanced Computing Technology Subject, the National High-Tech Program (863) as Chief Scientist. He is a member of the Consulting Committee of the Central Government’s Information Office, and Chairman of the Expert Committee in both the National e-Government Engineering Taskforce and the National e-Government Standard office. Dr. Huai and his colleagues are leading the key projects in e-Science of the National Science Foundation of China (NSFC) and Sino-UK. He has authored over 100 papers. His research interests include middleware, peer-to-peer (P2P), grid computing, trustworthiness and security. Yunhao Liu received his B.S. degree in Automation Department from Tsinghua University, China, in 1995, and an M.A. degree in Beijing Foreign Studies University, China, in 1997, and an M.S. and a Ph.D. degree in computer science and engineering at Michigan State University in 2003 and 2004, respectively. He is now an assistant professor in the Department of Computer Science and Engineering at Hong Kong University of Science and Technology. His research interests include peer-to-peer computing, pervasive computing, distributed systems, network security, grid computing, and high-speed networking. He is a senior member of the IEEE Computer Society. Lionel M. Ni is chair professor and head of the Computer Science and Engineering Department at Hong Kong University of Science and Technology. Lionel M. Ni received the Ph.D. degree in electrical and computer engineering from Purdue University, West Lafayette, Indiana, in 1980. He was a professor of computer science and engineering at Michigan State University from 1981 to 2003, where he received the Distinguished Faculty Award in 1994. His research interests include parallel architectures, distributed systems, high-speed networks, and pervasive computing. A fellow of the IEEE and the IEEE Computer Society, he has chaired many professional conferences and has received a number of awards for authoring outstanding papers.  相似文献   

13.
14.
A digital turbine control system (TCS) has been developed for retrofitting an old analog TCS in a nuclear power plant. The developed TCS, which controls the speed of a turbine and the power load of a generator, is based on a triple modular redundant structure to ensure the system reliability. In addition, a turbine simulator has been developed to verify the perfection of the TCS prior to its actual installation. The simulator is composed of a graphic editor, a component model builder, and a system simulation solver. The tested TCS has been successfully applied to a CANDU type nuclear power plant. This paper describes major features of the developed TCS and the turbine simulator including thermal-hydraulic models. Also, the simulation result in a laboratory is compared with the pre startup simulation and the actual operation result. Recommended by Editor Hyun Seok Yang. In-Kyu Choi was born in Jeonjoo, Korea in 1967. He obtained his Master’s degree in Electrical Engineering from Chungnam National University in 2004. His research interests include control in power plant machines such as boilers, drums, turbines, and generators. He is now a Senior Member of the KEPCO Research Institute. Jong-An Kim received the B.S. degree in Electronic Engineering from Won-Kwang University, Ik-San, Korea in 1985. He joined the Korea Electric Power Corporation (KEPCO) in 1976, and has mainly worked in the control systems engineering areas of power plants. He is now a Principal Engineer in the Korea Electric Power Research Institute (KEPRI) and his research interests include the design of power plant control systems as well as new technology development. Chang-Ki Jeong was born in Daejeon, Korea in 1956. He obtained his Master’s degree in Electrical Engineering from Daejeon Industry College in 1998. His research interests include control in power plant machines such as boilers, drums, turbines, and generators. He is a Principal Member of the KEPCO Research Institute. Joo-Hee Woo was born in Sangjoo, Korea in 1970. He obtained his Master’s degree in Electrical Engineering from Kyungbook National University in 1995. His research interests include control in power plant machines such as boilers, drums, turbines, and generators. He is now a Senior Member of the KEPCO Research Institute. Ji-Young Choi received the B.S. degree in Mechanical Engineering from Sogang University in 2005. He is a graduate student of the Department of Mechanical Engineering at Sogang University in Seoul, Korea. Choi’s research interests are in the areas of heat transfer, PEM fuel cells, and microfluidics. Gihun Son received the B.S. and M.S. degrees in Mechanical Engineering from Seoul National University in 1986 and 1988, respectively. He obtained the Ph.D. degree in Mechanical Engineering from UCLA in 1996. Dr. Son is currently a Professor in the Department of Mechanical Engineering at Sogang University in Seoul, Korea. His research interests are in the areas of multiphase dynamics, heat transfer, and power system simulation.  相似文献   

15.
A parameter search for a Central Pattern Generator (CPG) for biped walking is difficult because there is no methodology to set the parameters and the search space is broad. These characteristics of the parameter search result in numerous fitness evaluations. In this paper, nonparametric estimation based Particle Swarm Optimization (NEPSO) is suggested to effectively search the parameters of CPG. The NEPSO uses a concept experience repository to store a previous position and the fitness of particles in a PSO and estimated best position to accelerate a convergence speed. The proposed method is compared with PSO variants in numerical experiments and is tested in a three dimensional dynamic simulator for bipedal walking. The NEPSO effectively finds CPG parameters that produce a gait of a biped robot. Moreover, NEPSO has a fast convergence property which reduces the evaluation of fitness in a real environment. Recommended by Editorial Board member Euntai Kim under the direction of Editor Jae-Bok Song. Jeong-Jung Kim received the B.S. degree in Electronics and Information Engineering from Chonbuk National University in 2006 and the M.S. degree in Robotics from Korea Advanced Institute of Science and Technology in 2008. He is currently working toward a Ph.D. at the Korea Advanced Institute of Science and Technology. His research interests include biologically inspired robotics and machine learning. Jun-Woo Lee received the B.S. degree in Electronics, Electrical and Communication Engineering from Pusan National University in 2007. He is currently working toward an M.S. in the Korea Advanced Institute of Science and Technology. His research interests include swarm intelligence and machine learning. Ju-Jang Lee was born in Seoul, Korea, in 1948. He received the B.S. and M.S. degrees from Seoul National University, Seoul, Korea, in 1973 and 1977, respectively, and the Ph.D. degree in Electrical Engineering from the University of Wisconsin, in 1984. From 1977 to 1978, he was a Research Engineer at the Korean Electric Research and Testing Institute, Seoul. From 1978 to 1979, he was a Design and Processing Engineer at G. T. E. Automatic Electric Company, Waukesha, WI. For a brief period in 1983, he was the Project Engineer for the Research and Development Department of the Wisconsin Electric Power Company, Milwaukee. He joined the Department of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, in 1984, where he is currently a Professor. In 1987, he was a Visiting Professor at the Robotics Laboratory of the Imperial College Science and Technology, London, U.K. From 1991 to 1992, he was a Visiting Scientist at the Robotics Department of Carnegie Mellon University, Pittsburgh, PA. His research interests are in the areas of intelligent control of mobile robots, service robotics for the disabled, space robotics, evolutionary computation, variable structure control, chaotic control systems, electronic control units for automobiles, and power system stabilizers. Dr. Lee is a member of the IEEE Robotics and Automation Society, the IEEE Evolutionary Computation Society, the IEEE Industrial Electronics Society, IEEK, KITE, and KISS. He is also a former President of ICROS in Korea and a Counselor of SICE in Japan. He is a Fellow of SICE and ICROS. He is an Associate Editor of IEEE Transactions on Industrial Electronics and IEEE Transactions on Industrial Informatics.  相似文献   

16.
The simple least-significant-bit (LSB) substitution technique is the easiest way to embed secret data in the host image. To avoid image degradation of the simple LSB substitution technique, Wang et al. proposed a method using the substitution table to process image hiding. Later, Thien and Lin employed the modulus function to solve the same problem. In this paper, the proposed scheme combines the modulus function and the optimal substitution table to improve the quality of the stego-image. Experimental results show that our method can achieve better quality of the stego-image than Thien and Lin’s method does. The text was submitted by the authors in English. Chin-Shiang Chan received his BS degree in Computer Science in 1999 from the National Cheng Chi University, Taipei, Taiwan and the MS degree in Computer Science and Information Engineering in 2001 from the National Chung Cheng University, ChiaYi, Taiwan. He is currently a Ph.D. student in Computer Science and Information Engineering at the National Chung Cheng University, Chiayi, Taiwan. His research fields are image hiding and image compression. Chin-Chen Chang received his BS degree in applied mathematics in 1977 and his MS degree in computer and decision sciences in 1979, both from the National Tsing Hua University, Hsinchu, Taiwan. He received his Ph.D. in computer engineering in 1982 from the National Chiao Tung University, Hsinchu, Taiwan. During the academic years of 1980–1983, he was on the faculty of the Department of Computer Engineering at the National Chiao Tung University. From 1983–1989, he was on the faculty of the Institute of Applied Mathematics, National Chung Hsing University, Taichung, Taiwan. From 1989 to 2004, he has worked as a professor in the Institute of Computer Science and Information Engineering at National Chung Cheng University, Chiayi, Taiwan. Since 2005, he has worked as a professor in the Department of Information Engineering and Computer Science at Feng Chia University, Taichung, Taiwan. Dr. Chang is a Fellow of IEEE, a Fellow of IEE and a member of the Chinese Language Computer Society, the Chinese Institute of Engineers of the Republic of China, and the Phi Tau Phi Society of the Republic of China. His research interests include computer cryptography, data engineering, and image compression. Yu-Chen Hu received his Ph.D. degree in Computer Science and Information Engineering from the Department of Computer Science and Information Engineering, National Chung Cheng University, Chiayi, Taiwan in 1999. Dr. Hu is currently an assistant professor in the Department of Computer Science and Information Engineering, Providence University, Sha-Lu, Taiwan. He is a member of the SPIE society and a member of the IEEE society. He is also a member of the Phi Tau Phi Society of the Republic of China. His research interests include image and data compression, information hiding, and image processing.  相似文献   

17.
We employ a static analysis to examine the extensivity (∀x:x≤f(x)) of functions defined over lattices in a λ-calculus augmented with lattice operations. The need for such a verification procedure has arisen in our work on a generator system (called Zoo) of static program-analyzers. The input to Zoo is a static analysis specification that consists of lattice definitions and function definitions over the lattices. Once the extensivity of the functions is ascertained, the generated analyzer is guaranteed to terminate when the lattices have finite-heights. The extensivity analysis consists of a sound syntax-driven deductive rules whose satisfiability check is done by a constraint solving procedure. Hyunjun Eo: He is a Ph.D. candidate of Computer Science Dept. at KAIST (Korea Advanced Institute of Science and Technology). He received his B.S. and M.S. in Computer Science from KAIST in 1996 and 1998, respectively. For 1998–2003, he was a research assistant of the National Creative Research Initiative Center for Research On Program Analysis System. His research interest has been on static program analysis, program logics, and higher-order and typed languages. He is currently working on developing a tool for automatic generation of program analyzers. Kwangkeun Yi, Ph.D.: His research interest has been on semantic-based program analysis and systems application of language technologies. After his Ph.D. from University of Illinois at Urbana-Champaign he joined the Software Principles Research Department at Bell Laboratories, where he worked on various static analysis approaches for higher-order and typed programming languages. For 1995–2003, he was a faculty member in the Department of Computer Science, Korea Advanced Institute of Science and Technology. Since Fall 2003, he has been a faculty member in the School of Computer Science and Engineering, Seoul National University. Kwang-Moo Choe, Ph.D.: He is a professor of Computer Science at Korea Advanced Institute of Science and Technology. He received his B.S. from Seoul National University in 1976, and his M.S. and Ph.D. from Korea Advanced Institute of Science and Technology in 1978 and 1984, respectively. For 1985–1986, he was a technical staff of AT&T Bell Labs at Murray Hill. His research interest is formal language theory, parallel evaluation of logic programs, and optimizing compilers.  相似文献   

18.
This paper presents new object-spatial layout-route based hybrid map representation and global localization approaches using a stereo camera. By representing objects as high-level features in a map, a robot can deal more effectively with different contexts such as dynamic environments, human-robot interaction, and semantic information. However, the use of objects alone for map representation has inherent problems. For example, it is difficult to represent empty spaces for robot navigation, and objects are limited to readily recognizable things. One way to overcome these problems is to develop a hybrid map that includes objects and the spatial layout of a local space. The map developed in this research has a hybrid structure that combines a global topological map and a local hybrid map. The topological map represents the spatial relationships between local spaces. The local hybrid map combines the spatial layout of the local space with the objects found in that space. Based on the proposed map, we suggest a novel coarse-to-fine global localization method that uses object recognition, point cloud fitting and probabilistic scan matching. This approach can accurately estimate robot pose with respect to the correct local space. Recommended by Editor Jae-Bok Song. This research was performed for the Intelligent Robotics Development Program, one of the 21st Century Frontier R&D Programs funded by the Ministry of Knowledge Economy of Korea. Soonyong Park received the B.S. and M.S. degrees from the Department of Mechanical Engineering, Kyunghee University, Seoul, Korea, in 2001 and 2003, respectively. He is currently working toward the Ph.D. degree in the Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Korea. Since 2001, he has been a student researcher in the Center for Cognitive Robotics Research, Korea Institute of Science and Technology (KIST), Seoul, Korea. His research interests include mobile robot navigation and computer vision. Mignon Park received the B.S. and M.S. degrees in Electronics from Yonsei University, Seoul, Korea, in 1973 and 1977, respectively. He received the Ph.D. degree in University of Tokyo, Japan, 1982. He was a researcher with the Institute of Biomedical Engineering, University of Tokyo, Japan, from 1972 to 1982, as well as at the Massachusetts Institute of Technology, Cambridge, and the University of California Berkeley, in 1982. He was a visiting researcher in Robotics Division, Mechanical Engineering Laboratory, Ministry of International Trade and Industry, Tsukuba, Japan, from 1986 to 1987. He has been a Professor in the Department of Electrical and Electronic Engineering in Yonsei University, since 1982. His research interests include fuzzy control and application, robotics, and fuzzy biomedical system. Sung-Kee Park is a principal research scientist for Korea Institute of Science and Technology (KIST). He received the B.S. and M.S. degrees in Mechanical Design and Production Engineering from Seoul National University, Seoul, Korea, in 1987 and 1989, respectively. He received the Ph.D. degree (2000) from Korea Advanced Institue of Science and Technology (KAIST), Korea, in the area of computer vision. Since then, he has been working for the center for cognitive robotics research at KIST. During his period at KIST, he held a visiting position at the Robotics Institute of Carnegie Mellon University in 2005, where he did research on object recognition. His recent work has been on cognitive visual processing, object recognition, visual navigation, and human-robot interaction.  相似文献   

19.
New fusion predictors for linear dynamic systems with different types of observations are proposed. The fusion predictors are formed by summation of the local Kalman filters/predictors with matrix weights depending only on time instants. The relationship between fusion predictors is established. Then, the accuracy and computational efficiency of the fusion predictors are demonstrated on the first-order Markov process and the GMTI model with multisensor environment. Recommended by Editorial Board member Lucy Y. Pao under the direction of Editor Young Il Lee. This work was partially supported by the Korea Science and Engineering Foundation (KOSEF) grant funded by the Korean government (MOST), No. R01-2007-000-20227-0 and the Center for Distributed Sensor Network at GIST. Ha-Ryong Song received the B.S. degree in Control and Instrumentation Engineering from the Chosun University, Korea, in 2006, the M.S. degree in School of Information and Mechatronics from the Gwangju Institute of Science and Technology, Korea, in 2007. He is currently a Ph.D. candidate in Gwangju Institute of Science and Technology. His research interests include estimation, target tracking systems, data fusion, nonlinear filtering. Moon-Gu Jeon received the B.S. degree in architectural engineering from the Korea University, Korea in 1988. He then received both the M.S. and Ph.D. degrees in computer science and scientific computation from the University of Minnesota in 1999 and 2001, respectively. Currently, he is an Associate Professor at the School of Information and Mechatronics of the Gwangju Institute of Science and Technology (GIST). His current research interests are in machine learning and pattern recognition and evolutionary computation. Tae-Sun Choi received the B.S. degree in Electrical Engineering from the Seoul National University, Seoul, Korea, in 1976, the M.S. degree in Electrical Engineering from the Korea Advanced Institute of Science and Technology, Seoul, Korea, in 1979, and the Ph.D. degree in Electrical Engineering from the State University of New York at Stony Brook, in 1993. He is currently a Professor in the School of Information and Mechatronics at Gwangju Institute of Science and Technology, Korea. His research interests include image processing, machine/robot vision, and visual communications. Vladimir Shin received the B.Sc. and M.Sc. degrees in Applied Mathematics from Moscow State Aviation Institute, in 1977 and 1979, respectively. In 1985 he received the Ph.D. degree in Mathematics at the Institute of Control Science, Russian Academy of Sciences, Moscow. He is currently an Associate Professor at Gwangju Institute of Science and Technology, South Korea. His research interests include estimation, filtering, tracking, data fusion, stochastic control, identification, and other multidimensional data processing methods.  相似文献   

20.
A new stick text segmentation method based on the sub connected area analysis is introduced in this paper.The foundation of this method is the sub connected area representation of text image that can represent all connected areas in an image efficiently.This method consists mainly of four steps:sub connected area classification,finding initial boundary following point,finding optimal segmentation point by boundary tracing,and text segmentaton.This method is similar to boundary analysis method but is more efficient than boundary analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号