首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The transmembrane segments of sarcoplasmic reticulum Ca(2+)-ATPase were determined by trypsinization of cytoplasmic side-out intact sarcoplasmic reticulum vesicles. The membrane portion of tryptic digest comprising the transmembrane fragments, joined by the intravesicular segments, was separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis after labeling with fluorescein 5-maleimide in the presence of sodium dodecyl sulfate. In this way, seven fluorescent bands of tryptic fragments below 11 kDa were observed which were derived from 4 pairs of membrane spanning segments and one hydrophobic sequence at the C-terminal end. Two peptides of 10.8 and 10.6 kDa had the identical N-terminal sequence beginning at Glu826, representing the transmembrane segments M7 and M8 and their connecting loop. A band at 8.1 kDa contained one peptide beginning at Tyr36 (M1/loop/M2). A 7.7-kDa peptide starting at Leu253 (M3/loop/M4) and a 7.3-kDa peptide beginning at Ala752 (M5/loop/M6) were also observed. A band at 6.7 kDa contained two peptides, one beginning at Ser48 (M1/loop/M2) and another beginning at Tyr763 (M5/loop/M6). In addition, a 4-kDa peptide beginning at Met925 was observed. The size of this peptide did not allow for a complete pair of transmembrane segments, but this peptide could have been derived from trypsinolysis between the last pair of membrane spanning segments. These data therefore provide biochemical evidence for at least 8 transmembrane segments and perhaps two more at the C-terminal end of the enzyme.  相似文献   

2.
We have examined the oxidative sensitivity of the Ca2+-ATPase of skeletal muscle sarcoplasmic reticulum (SR) membranes, exposing isolated SR membranes to the thermolabile water soluble free radical initiator, 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH). Incubation with up to 702 microM AAPH-derived radicals results in a concentration- and time-dependent inhibition of calcium-dependent ATPase activity correlating with the loss of monomeric Ca2+-ATPase polypeptides, and the concomitant appearance of higher molecular weight species. However, no oxidant-induced protein fragmentation is detected. The observed formation of oxidant-induced bityrosine accounts for the intermolecular Ca2+-ATPase cross-links, as well as intramolecular cross-links. The oxidation of sulfhydryl groups to disulfides as another possible source of intermolecular cross-links has been ruled out after examination of SDS -PAGE performed under both reducing and non-reducing conditions. Exposure of the SR membranes to AAPH-derived radical species results in a small degree of lipid peroxidation that is not correlated with enzyme inactivation, suggesting that modification of membrane-spanning peptides is not related to enzyme inactivation. Six cytoplasmic peptides have been identified that are modified by exposure to AAPH or, alternatively, to hydrogen peroxide, suggesting that these regions of the Ca2+-ATPase are generally sensitive to oxidants. These oxidized peptides were identified after separation by reversed-phase HPLC followed by N-terminal sequencing and amino acid analysis as corresponding to the following sequences of the Ca2+-ATPase: (i) Glu121 to Lys128, (ii) His190 to Lys218, (iii) Asn330 to Lys352, (iv) Gly432 to Lys436, (v) Glu551 to Arg604, and (vi) Glu657 to Arg671. The Glu551 to Arg604 peptide, located within the nucleotide binding domain, was found to participate in the formation of intermolecular bityrosine cross-links with the identical Glu551 to Arg604 peptide from a neighboring Ca2+-ATPase polypeptide chain.  相似文献   

3.
The effects of nitric oxide on the activities of thapsigargin-sensitive sarcoplasmic reticulum Ca2+-ATPase (SERCA) and Ca2+ uptake by sarcoplasmic reticulum (SR) membranes prepared from white skeletal muscle of rabbit femoral muscle were studied. Pretreatment of the SR preparations with nitric oxide at concentrations of up to 250 microM for 1 min decreased the SERCA activity concentration dependently, and also decreased their Ca2+ uptake. Both these effects of nitric oxide were reversible. Inhibitors of guanylyl cyclase and protein kinase G (PKG) had no significant effect on the nitric oxide-induced inhibitions of SERCA and Ca2+ uptake. Moreover, dithiothreitol did not reverse the inhibitory effects of nitric oxide on SERCA and Ca2+ uptake. These findings suggest that nitric oxide inhibits SERCA, mainly SERCA 1, of rabbit femoral skeletal muscle by an action independent of the cyclic GMP-PKG system or oxidation of thiols, and probably by a direct action on SERCA protein.  相似文献   

4.
Circular smooth muscle strips isolated from cat gastric fundus were studied in order to understand whether the sarcoplasmic reticulum (SR) and SR Ca2+-ATPase could play a role in the regulation of the muscle tone. Cyclopiazonic acid (CPA), a specific inhibitor of SR Ca2+-ATPase, caused a significant and sustained increase in muscle tone, depending on the presence of extracellular Ca2+. Nifedipine and cinnarizin only partially suppressed the CPA-induced tonic contraction. Bay K 8644 antagonized the relaxant effect of nifedipine in CPA-contracted fundus. Nitric-oxide-releasing agents sodium nitroprusside and 3-morpholino-sydnonimine completely suppressed the CPA-induced tonic contraction. The blockers of Ca2+-activated K+ channels, tetraethylammonium, charybdotoxin and/or apamin, decreased the contractile effect of CPA. Vanadate increased the tone but did not change significantly the effect of CPA. CPA exerted its contractile effect even when Ca2+ influx was triggered through the Na+/Ca2+ exchanger and the other Ca2+ entry pathways were blocked. Thapsigargin, another specific SR Ca2+-ATPase inhibitor, also increased the muscle tone. The effect of thapsigargin was completely suppressed by sodium nitroprusside and 3-morpholino-sydnonimine and partially by nifedipine. In conclusion, under conditions when the SR Ca2+-ATPase is inhibited, the tissue develops a strong tonic contraction and a large part of this is mediated by Ca2+ influx presumably via nifedipine-sensitive Ca2+ channels. This study suggests the important role of SR Ca2+-ATPase in the modulation of the muscle tone and the function of SR as a "buffer barrier" to Ca2+ entry in the cat gastric fundus smooth muscle.  相似文献   

5.
The oxidative inactivation of rabbit skeletal muscle Ca(2+)-ATPase in sarcoplasmic reticulum (SR) vesicles by peroxynitrite (ONOO-) was investigated. The exposure of SR vesicles (10 mg/ml protein) to low peroxynitrite concentrations ( < or = 0.2 mM) resulted in a decrease of Ca(2+)-ATPase activity primarily through oxidation of sulfhydryl groups. Most of this deactivation (ca.70%) could be chemically reversed by subsequent reduction of the enzyme with either dithiothreitol (DTT) or sodium borohydride (NaBH4), indicating that free cysteine groups were oxidized to disulfides. The initial presence of 5 mM glutathione failed to protect the SR Ca(2+)-ATPase activity. However, as long as peroxynitrite concentrations were kept < or = 0.45 mM, the efficacy of DTT to reverse Ca(2+)-ATPase inactivation was enhanced for reaction mixtures which initially contained 5 mM glutathione. At least part of the disulfides were formed intermolecularly since gel electrophoresis revealed protein aggregation which could be reduced under reducing conditions. The application of higher peroxynitrite concentrations ( > or = 0.45 mM) resulted in Ca(2+)-ATPase inactivation which could not be restored by exposure of the modified protein to reducing agents. On the other hand, treatment of modified protein with NaBH4 recovered all SR protein thiols. This result indicates that possibly the oxidation of other amino acids contributes to enzyme inactivation, corroborated by amino acid analysis which revealed some additional targets for peroxynitrite or peroxynitrite-induced processes such as Met, Lys, Phe, Thr, Ser, Leu and Tyr. Tyr oxidation was confirmed by a significant lower sensitivity of oxidized SR proteins to the Lowry assay. However, neither bityrosine nor nitrotyrosine were formed in significant yields, as monitored by fluorescence spectroscopy and immunodetection, respectively. The Ca(2+)-ATPase of SR is involved in cellular Ca(2+)-homeostasis. Thus, peroxynitrite mediated oxidation of the Ca(2+)-ATPase might significantly contribute to the loss of Ca(2+)-homeostasis observed under biological conditions of oxidative stress.  相似文献   

6.
The sarcoplasmic reticulum (SR) C(a2+)-ATPase was purified and reconstituted into the sealed phospholipids vesicles with or without transmembrane Ca2+ gradient. The role of phospholipids, especially phosphatidylcholine (PC), in the modulation of C(a2+)-ATPase by transmembrane Ca2+ gradient was investigated. The results are as follows. (i) Incubated with phospholipids, the enzyme activity of the delipidated C(a2+)-ATPase is inhibited by Ca2+ and the highest inhibition is observed in the presence of PC. (ii) When there exists a transmembrane Ca2+ gradient (higher Ca2+ concentration inside vesicles, 1,000 mumol/L:50 mumol/L, similar to the physiological condition), the inhibition of C(a2+)-ATPase by transmembrane Ca2+ gradient can be only observed in the vesicles containing PC:PE, but not in those containing PS:PE or PG:PE. The highest inhibition is obtained at a 50:50 molar ratio of PC:PE (iii) By comparing the effects of PC differing in acyl chains, higher inhibition of C(a2+)-ATPase is observed in vesicles containing DPPC:PE and DOPC:PE, while no inhibition in DMPC:PE vesicles (iv) If the transmembrane Ca2+ gradient is in the inverse direction, the enzyme activity of C(a2+)-ATPase is inhibited whenever reconstituted with acidic or neutral phospholipids.  相似文献   

7.
The cardiac muscle sarcoplasmic reticulum Ca2+ release channel (ryanodine receptor) is a ligand-gated channel that is activated by micromolar cytoplasmic Ca2+ concentrations and inactivated by millimolar cytoplasmic Ca2+ concentrations. The effects of sarcoplasmic reticulum lumenal Ca2+ on the purified release channel were examined in single channel measurements using the planar lipid bilayer method. In the presence of caffeine and nanomolar cytosolic Ca2+ concentrations, lumenal-to-cytosolic Ca2+ fluxes >/=0.25 pA activated the channel. At the maximally activating cytosolic Ca2+ concentration of 4 microM, lumenal Ca2+ fluxes of 8 pA and greater caused a decline in channel activity. Lumenal Ca2+ fluxes primarily increased channel activity by increasing the duration of mean open times. Addition of the fast Ca2+-complexing buffer 1,2-bis(2-aminophenoxy)ethanetetraacetic acid (BAPTA) to the cytosolic side of the bilayer increased lumenal Ca2+-activated channel activities, suggesting that it lowered Ca2+ concentrations at cytosolic Ca2+-inactivating sites. Regulation of channel activities by lumenal Ca2+ could be also observed in the absence of caffeine and in the presence of 5 mM MgATP. These results suggest that lumenal Ca2+ can regulate cardiac Ca2+ release channel activity by passing through the open channel and binding to the channel's cytosolic Ca2+ activation and inactivation sites.  相似文献   

8.
9-Methyl-7-bromoeudistomin D (MBED), the most powerful caffeine-like releaser of Ca2+ from skeletal muscle sarcoplasmic reticulum, induced Ca2+ release from the cardiac sarcoplasmic reticulum. MBED (5 microM) and caffeine (1 mM) caused rapid Ca2+ release from the fragmented cardiac sarcoplasmic reticulum in a Ca2+ electrode experiment. [3H]MBED bound to a single class of high-affinity binding sites in cardiac sarcoplasmic reticulum membranes (Kd = 150 nM). These results suggest that MBED binds to a specific binding site on cardiac sarcoplasmic reticulum membranes to induce Ca2+ release from the cardiac sarcoplasmic reticulum. Thus, MBED is a useful probe for characterizing Ca2+ release the channels not only in skeletal sarcoplasmic reticulum but also in cardiac sarcoplasmic reticulum.  相似文献   

9.
Cardiac hypertrophy and heart failure are known to be associated with a reduction in Ca2+-ATPase pump levels of the sarcoplasmic reticulum (SR). To determine whether, and to what extent, alterations in Ca2+ pump numbers can affect contraction and relaxation parameters of the heart, we have overexpressed the cardiac SR Ca2+-ATPase specifically in the mouse heart using the alpha-myosin heavy chain promoter. Analysis of 2 independent transgenic lines demonstrated that sarco(endo)plasmic reticulum Ca2+-ATPase isoform (SERCA2a) mRNA levels were increased 3.88+/-0. 4-fold and 7.90+/-0.2-fold over those of the control mice. SERCA2a protein levels were increased by 1.31+/-0.05-fold and 1.54+/-0. 05-fold in these lines despite high levels of mRNA, suggesting that complex regulatory mechanisms may determine the SERCA2a pump levels. The maximum velocity of Ca2+ uptake (Vmax) was increased by 37%, demonstrating that increased pump levels result in increased SR Ca2+ uptake function. However, the apparent affinity of the SR Ca2+-ATPase for Ca2+ remains unchanged in transgenic hearts. To evaluate the effects of overexpression of the SR Ca2+ pump on cardiac contractility, we used the isolated perfused work-performing heart model. The transgenic hearts showed significantly higher myocardial contractile function, as indicated by increased maximal rates of pressure development for contraction (+dP/dt) and relaxation (-dP/dt), together with shortening of the normalized time to peak pressure and time to half relaxation. Measurements of intracellular free calcium concentration and contractile force in trabeculae revealed a doubling of Ca2+ transient amplitude, with a concomitant boost in contractility. The present study demonstrates that increases in SERCA2a pump levels can directly enhance contractile function of the heart by increasing SR Ca2+ transport.  相似文献   

10.
In this study, we investigated whether the fast-twitch skeletal muscle sarco(endo)plasmic reticulum Ca2+ transport pump (SERCA1a) can functionally substitute the cardiac SERCA2a isoform and how its overexpression affects cardiac contractility. For this purpose, we generated transgenic (TG) mice that specifically overexpress SERCA1a in the heart, using the cardiac-specific alpha-myosin heavy chain promoter. Ectopic expression of SERCA1a resulted in a 2.5-fold increase in the amount of total SERCA protein. At the same time, the level of the endogenous SERCA2a protein was decreased by 50%, whereas the level of other muscle proteins, including calsequestrin, phospholamban, actin, and tropomyosin, remained unchanged. The steady-state level of SERCA phosphoenzyme intermediate was increased 2.5-fold, and the maximal velocity of Ca2+ uptake was increased 1.7-fold in TG hearts, demonstrating that the overexpressed protein is functional. Although the basal cytosolic calcium signal was decreased by 38% in TG cardiomyocytes, the amplitude of cytosolic calcium signal was increased by 71.8%. The rate of calcium resequestration was also increased in TG myocytes, which was reflected by a 51.6% decrease in the normalized time to 80% decay of calcium signal. This resulted in considerably increased peak rates of myocyte shortening and relengthening (50.0% and 66.6%, respectively). Cardiac functional analysis using isolated work-performing heart preparations revealed significantly faster rates of contraction and relaxation in TG hearts (41.9% and 39.5%, respectively). The time to peak pressure and the time to half-relaxation were shorter (29.1% and 32.7%, respectively). In conclusion, our study demonstrates that the SERCA1a pump can functionally substitute endogenous SERCA2a, and its overexpression significantly enhances Ca2+ transport and contractile function of the myocardium. These results also demonstrate that the SERCA pump level is a critical determinant of cardiac contractility.  相似文献   

11.
In the adult myocardium the Ca2+ uptake and release functions of the sarcoplasmic reticulum (SR) are known to be regulated by a membrane-associated Ca2+-calmodulin-dependent protein kinase (CaM kinase) which phosphorylates the Ca2+-pumping ATPase (Ca2+ pump), Ca2+ release channel (ryanodine receptor) and the Ca2+ pump-regulatory protein, phospholamban. The role of CaM kinase during development, however, has not been examined previously. The present study investigated the ontogenetic expression of SR-associated CaM kinase in the rabbit myocardium as well as development-related changes in CaM kinase-mediated phosphorylation of the SR proteins (Ca2+ pump, Ca2+ release channel and phospholamban) involved in transmembrane Ca2+ cycling. For these experiments, cardiac muscle homogenate and SR-enriched membrane fraction derived from fetal (21- and 28-days gestation), newborn (2 days postnatal) and adult New Zealand White rabbits were used. Western immunoblotting analysis detected the presence of phospholamban, Ca2+ pump and Ca2+ release channel in homogenate and SR at all ages tested. The amount of these proteins in the SR increased substantially during fetal and postnatal development. Phosphorylation studies revealed the presence of CaM kinase-dependent phosphorylation of the Ca2+ pump, Ca2+ release channel and phospholamban as early as 21-days gestation. This phosphorylation could be elicited with the addition of only Ca2+ and calmodulin indicating the presence of a SR-associated CaM kinase as early as 21-days gestation. This was confirmed using a delta-CaM kinase II-specific antibody. Phosphorylation per unit amount of each substrate was greater in the fetus and newborn compared to adult. Phosphorylation of phospholamban could be elicited by exogenous cAMP-dependent protein kinase (PKA) at all developmental stages studied. Activation of SR CaM kinase with Ca2+ and calmodulin, or induction of phospholamban phosphorylation by exogenous PKA, resulted in stimulation of the Ca2+ uptake activity of SR in fetal, newborn and adult heart. These results demonstrate early ontogenetic expression of the Ca2+ cycling proteins and CaM kinase in the SR and the concurrent development of phosphorylation-dependent regulation of SR Ca2+ cycling.  相似文献   

12.
The plasma-membrane H+-ATPase of Saccharomyces cerevisiae, which belongs to the P2 subgroup of cation-transporting ATPases, is encoded by the PMA1 gene and functions physiologically to pump protons out of the cell. This study has focused on hydrophobic transmembrane segments M5 and M6 of the H+-ATPase. In particular, a conserved aspartate residue near the middle of M6 has been found to play a critical role in the structure and biogenesis of the ATPase. Site-directed mutants in which Asp-730 was replaced by an uncharged residue (Asn or Val) were abnormally sensitive to trypsin, consistent with the idea that the proteins were poorly folded, and immunofluorescence confocal microscopy showed them to be arrested in the endoplasmic reticulum. Similar defects are known to occur when either Arg-695 or His-701 in M5 is replaced by a neutral residue (Dutra, M. B., Ambesi, A., and Slayman, C. W. (1998) J. Biol. Chem. 273, 17411-17417). To search for possible charge-charge interactions between Asp-730 and Arg-695 or His-701, double mutants were constructed in which positively and negatively charged residues were swapped or eliminated. Strikingly, two of the double mutants (R695D/D730R and R695A/D730A) regained the capacity for normal biogenesis and displayed near-normal rates of ATP hydrolysis and ATP-dependent H+ pumping. These results demonstrate that neither Arg-695 nor Asp-730 is required for enzymatic activity or proton transport, but suggest that there is a salt bridge between the two residues, linking M5 and M6 of the 100-kDa polypeptide.  相似文献   

13.
The amount of heat produced during the hydrolysis of ATP by the sarcoplasmic reticulum Ca(2+)-ATPase was found to vary depending on the Ca2+ concentration in the medium. When the CaCl2 concentration is raised from 0.1 to 2.0 mM a part of the energy derived from ATP hydrolysis is not dissipated as heat but it is used by the enzyme to resenthesize a small fraction of the ATP previously cleaved. Thus, Ca2+ seems to regulate the ATPase in such a way as to vary the fraction of energy derived from ATP hydrolysis which is converted into heat and that which is conserved as chemical energy.  相似文献   

14.
Electron microscopy of multilamellar crystals of CA(2+)-ATPase currently offers the best opportunity for obtaining a high-resolution structure of this ATP-driven ion pump. Under certain conditions small, wormlike crystals are formed and provide views parallel to the lamellar plane, from which parameters of lamellar stacking can be directly measured. Assuming that molecular packing is the same, data from these views could supplement those obtained by tilting large, thin platelike crystals. However, we were surprised to discover that the lamellar spacing was variable and depended on the amount of glycerol present during crystallization (20% versus 5%). Projection maps (h,0,l) from these womklike crystals suggest different molecular contacts that give rise to the different lamellar spacings. Based on an orthogonal projection map (h,k,0) from collapsed, wormlike crystals and on x-ray powder patterns, we conclude that molecular packing within the lamellar plane is the same as that in thin, platelike crystals and is unaffected by glycerol. Finally, the orientation of molecules in the lamellar plane was characterized from freeze-dried, shadowed crystals. Comparing the profile of molecules in these multilamellar crystals with that previously observed in helical tubes induced by vanadate gives structural evidence of the conformational change that accompanies binding of calcium of Ca(2+)-ATPase.  相似文献   

15.
The sarcoplasmic reticulum (SR) calcium ATPase carries out active Ca2+ pumping at the expense of ATP hydrolysis. We have previously described the inhibition of SR ATPase by oxidative stress induced by the Fenton reaction (Fe2+ + H2O2 --> HO. + HO- + Fe3+). Inhibition was not related to peroxidation of the SR membrane nor to oxidation of ATPase thiols, and involved fragmentation of the ATPase polypeptide chain. The present study aims at further characterizing the mechanism of inhibition of the Ca2+-ATPase by oxygen reactive species at Fe2+ concentrations possibly found in pathological conditions of iron overload. ATP hydrolysis by SR vesicles was inhibited in a dose-dependent manner by micromolar concentrations of Fe2+, H2O2, and ascorbate. Measuring the rate constants of inactivation (k inact) at different Fe2+ concentrations in the presence of saturating concentrations of H2O2 and ascorbate (100 microM each) revealed a saturation profile with half-maximal inactivation rate at ca. 2 microM Fe2+. Inhibition was not affected by addition of 200 microM Ca2+ to the medium, indicating that it was not related to iron binding to the high affinity Ca2+ binding sites in the ATPase. Furthermore, inhibition was not prevented by the water-soluble hydroxyl radical scavengers mannitol or dimethylsulfoxide, nor by butylated hydroxytoluene (a lipid peroxidation blocker) or dithiothreitol (DTT). However, when Cu2+ was used instead of Fe2+ in the Fenton reaction, ATPase inhibition could be prevented by DTT. We propose that functional impairment of the Ca2+-pump may be related to oxidative protein fragmentation mediated by site-specific Fe2+ binding at submicromolar or low micromolar concentrations, which may occur in pathological conditions of iron overload.  相似文献   

16.
The enhanced diastolic Ca2+ levels observed in cardiac myocytes from patients with idiopathic dilated cardiomyopathy (DCM) may be either a consequence of functional impairment of sarcoplasmic reticulum calcium-ATPase (SERCA 2) and its regulator protein phospholamban or due to a reduction in the number of SERCA 2 proteins. As different myocardial membrane preparations may lead to different accumulation of proteins, the present study evaluated two different membrane preparations, in human failing and nonfailing myocardium for comparison of SERCA 2 activity and the protein expression of SERCA 2 and phospholamban. Crude membranes and tissue homo-genates without any centrifugation steps were prepared from human nonfailing hearts (donor hearts, NF, n=18) and terminally failing hearts (heart transplant, DCM, n=18). Calsequestrin protein expression was used as an internal control for overall protein expression. In both crude membranes and homogenates maximal SERCA 2 activity (Vmax) was significantly reduced in failing heart preparations (NF crude membranes, 130+/-8; DCM crude membranes, 102+/-5 nmol ATP/mg protein per minute). In contrast, the protein expression of SERCA 2 (NF crude membranes, 488+/-35; DCM crude membranes, 494+/-42; P=0.92), phospholamban (NF crude membranes, 497+/-51; DCM crude membranes, 496+/-45; P=0.98) and calsequestrin (NF crude membranes, 109+/-06; DCM crude membranes, 107+/-08; P=0.84) was unchanged in NF and DCM hearts in both preparation methods. This was also the case when the protein expression was normalized to calsequestrin protein levels. Preparation of sarcoplasmic reticulum in crude membranes led to enhanced purification and consequently higher SERCA 2, phospholamban, and calsequestrin protein levels in crude membranes than in the homogenates, which was paralleled by an increase in SERCA 2 enzyme activity. In conclusion, the altered Ca2+ handling in DCM may be a consequence of reduced SERCA 2 enzyme activity and not the result of differences in protein expression of the Ca2+ regulating proteins SERCA 2, phospholamban, and calsequestrin in human myocardium. The present study emphasizes the importance of different myocardial membrane preparations with respect to quantitative investigations of protein expression and function.  相似文献   

17.
A limited amount of information is available about the lumenal Ca2+ kinetics of the sarcoplasmic reticulum (SR). Incubation of mag-fura-2AM permitted to incorporate a sufficient amount of the probe into the SR vesicles, as determined by Mn2+ quenching. Rapid changes in the lumenal [Ca2+] ([Ca2+]lum) during Ca2+ uptake and release could be monitored by following the signal derived from the lumenal probe while clamping the extra-vesicular Ca2+ ([Ca2+]ex) at various desired levels with a BAPTA/Ca buffer. Changes in the [Ca2+]lum during uptake and release show the characteristics intrinsic to the SR Ca2+ pump (the [Ca2+]ex-dependence of the activation and inhibition by thapsigargin) and the Ca2+ release channel (blocking by ruthenium red), respectively. A new feature revealed by the [Ca2+]lum measurement is that during the uptake reaction the free [Ca2+]lum showed a significant oscillation. Several pieces of evidence suggest that this is due to some interactions between the Ca2+ pump and lumenal proteins.  相似文献   

18.
Treatment of rabbit sarcoplasmic reticulum Ca2+-ATPase with a variety of proteases, including elastase, proteinase K, and endoproteinases Asp-N and Glu-C, results in accumulation of soluble fragments starting close to the ATPase phosphorylation site Asp351 and ending in the Lys605-Arg615 region, well before the conserved sequences generally described as constituting the "hinge" region of this P-type ATPase (residues 670-760). These fragments, designated as p29/30, presumably originate from a relatively compact domain of the cytoplasmic head of the ATPase. They retain two structural characteristics of intact Ca2+-ATPase as follows: high sensitivity of peptidic bond Arg505-Ala506 to trypsin cleavage, and high reactivity of lysine residue Lys515 toward the fluorescent label fluorescein 5'-isothiocyanate. Regarding functional properties, these fragments retain the ability to bind nucleotides, although with reduced affinity compared with intact Ca2+-ATPase. The fragments also bind Nd3+ ions, leaving open the possibility that these fragments could contain the metal-binding site(s) responsible for the inhibitory effect of lanthanide ions on ATPase activity. The p29/30 soluble domain, like similar proteolytic fragments that can be obtained from other P-type ATPases, may be useful for obtaining three-dimensional structural information on the cytosolic portion of these ATPases, with or without bound nucleotides. From our findings we infer that a real hinge region with conformational flexibility is located at the C-terminal boundary of p29/30 (rather than in the conserved region of residues 670-760); we also propose that the ATP-binding cleft is mainly located within the p29/30 domain, with the phosphorylation site strategically located at the N-terminal border of this domain.  相似文献   

19.
Phencyclidine hydrochloride (PCP) also known as Angel Dust is a very potent psychotomimetic drug of abuse. Besides its central nervous system (CNS) effects PCP produces a number of adverse effects in a variety of tissues including the cardiovascular system. Since PCP is known to alter the cellular calcium homeostasis the present studies were initiated to determine the changes in cardiac Ca2+ ATPase activity in rats treated with PCP. For in vitro studies the cardiac sarcoplasmic reticulum (SR) fractions prepared from normal rats were incubated with 25, 50 and 100 microM PCP and the enzyme activities were estimated. Whereas, for in vivo studies the cardiac SR fractions prepared from rats treated with PCP (10 mg/kg body wt. single dose, intra-peritoneally (i.p.)) and sacrificed at different time intervals were used. PCP reduced the Ca2+ ATPase activity significantly both in vitro and in vivo. A 50% inhibition of the enzyme activity was obtained with 100 microM PCP in vitro. A significant reduction of SR Ca2+ ATPase was also evident as early as 1 h after treatment of rats with PCP. The reduction of Ca2+ ATPase activity in SR was irreversible even at 12 h after treatment. The in vitro kinetic studies revealed that PCP was found to be a competitive inhibitor of Ca2+ ATPase with respect to the substrate, ATP, and non-competitive with respect to Ca2+ activation. These results indicate that PCP alters the myocardial Ca2+ homeostasis by inhibiting the Ca2+ ATPase in cardiac SR in rats. Inhibition of SR Ca2+ ATPase may result in the impairment of contraction and relaxation coupling processes in the myocardium.  相似文献   

20.
Sequential dissociation of the two Ca2+ ions bound to non-phosphorylated sarcoplasmic reticulum Ca2+-ATPase was triggered by addition, in a stopped-flow experiment, of quin2, which acted both as a high-affinity chelator and as a Ca2+-sensitive fluorescent probe. The kinetics of Ca2+ dissociation were deduced from the observed changes in quin2 fluorescence in the visible region (with lambdaex = 313 nm), while fluorescence detection in the UV region (with lambdaex = 290 nm) made it possible to monitor the tryptophan fluorescence changes accompanying this dissociation under the same ionic conditions. In the absence of KCl or NaCl, at pH 6 or 7, the observed changes in quin2 fluorescence were monoexponential, with rate constants very close to those of the changes in ATPase tryptophan fluorescence, which also appeared monophasic. In the presence of 100 mM KCl, quin2 fluorescence changes, although still monoexponential, were faster than in the absence of the monovalent ions but distinctly slower than the changes in tryptophan fluorescence, which were accelerated to a larger extent. In addition, the apparent kinetics of the Trp fluorescence changes depended on the excitation wavelength. Using an excitation wavelength of 296 nm, the Trp fluorescence drop was still faster than with an excitation wavelength of 290 nm, and in the presence of NaCl it even displayed a clear undershoot. We conclude that in the presence of KCl or NaCl and with an excitation wavelength of 290 nm, the rapid drop in tryptophan fluorescence mainly monitors the dissociation of the first of the two Ca2+ ions to be released from Ca2+-ATPase, while excitation at 296 nm optically selects a subpopulation of Trp residues whose fluorescence level is lower in the ATPase species with one Ca2+ ion bound than in the Ca2+-deprived ATPase species. The latter conditions result in an initial drop in Trp fluorescence whose apparent rate constant (in single-exponential analysis) is faster than the true rate of dissociation of the first Ca2+ ion and in a subsequent slower rise related to dissociation of the second Ca2+ ion. The difference between results obtained in the absence and in the presence of K+ or Na+ is due to an antagonizing effect of these cations on proton-induced conformational rearrangement of Ca2+-free ATPase, a conformational rearrangement which changes the ATPase Trp fluorescence level and significantly affects the cooperativity of Ca2+ binding at equilibrium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号