首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The importance of the intake positioning height above the floor level on the performance of “ductless” personalized ventilation (“ductless” PV) in conjunction with displacement ventilation (DV) was examined with regard to the quality of inhaled air and of the thermal comfort provided. A typical office room with two workstations positioned one behind the other was arranged in a full-scale room. Each workstation consisted of a table with an installed “ductless” PV system, PC, desk lamp and seated breathing thermal manikin. The “ductless” PV system sucked the clean and cool displacement air supplied over the floor at four different heights, i.e. 2, 5, 10 and 20 cm and transported it direct to the breathing level. Moreover, two displacement airflow rates were used with a supply temperature adjusted in order to maintain an exhaust air temperature of 26 °C. Two pollution sources, namely air exhaled by one of the manikins and passive pollution on the table in front of the same manikin were simulated by constant dosing of tracer gases. The results show that the positioning of a “ductless” PV intake height up to 0.2 m above the floor will not significantly influence the quality of inhaled air and thermal comfort.  相似文献   

2.
It is difficult for a total air-conditioning system to satisfy the thermal comfort of all workers in an office. Therefore, an individually controlled system that can create a comfortable thermal environment for each worker is needed. In the present study, two chairs incorporating two fans each, one under the seat and one behind the backrest, were developed to provide isothermal forced airflow to the chair occupant. The chairs differed in the size of the fans. Experiments were conducted in a climate chamber during the summer. Seven subjects, who were healthy male college students, were allowed to freely control the two built-in fans by adjusting dials on the accompanying desk. The room air temperatures were set at 26 °C, 28 °C, 30 °C and 32 °C. The following findings were obtained. At a room air temperature of 28 °C, the whole-body thermal sensations were almost thermally neutral, regardless of the type of chair. At a room air temperature of 30 °C, the occupants were able to create acceptable thermal environments from the viewpoints of whole-body thermal sensation and comfort by using the chairs with fans. Their local discomfort rates at the back and lower back, which were affected by the isothermal airflows, were greatly improved at this room air temperature. However, at a room air temperature of 32 °C, the chairs tested in the present study were not able to provide acceptable thermal environments. In order to provide a more comfortable environment to the chair occupants, additional local systems to cool the head, arms, and hands are needed.  相似文献   

3.
In hot and humid region, air-conditioning is increasingly used to attain thermal comfort. Air-conditioning is highly energy intensive and it is desirable to develop alternative low-energy means to achieve comfort. In a previous experimental investigation using a room equipped with radiant cooling panel, it was found that cooling water kept to 25 °C could be used to attain thermal comfort under some situations, while water at such temperature would not cause condensation of moisture from air on the panel. This paper reports results of a series of whole-year simulations using TRNSYS computer code on applications of radiant cooling to a room model that represents the actual experimental room. Admitting the inability of radiant cooling to accept latent load, chilled water at 10 °C was supplied to cooling coil to precool ventilation air while water cooled by cooling tower was used for radiant cooling in daytime application. For night-time, cooling water from cooling tower supplied for radiant cooling was found to be sufficient to achieve thermal comfort. Such applications are considered to be more amenable to residential houses.  相似文献   

4.
The effect of vertical air temperature gradient on overall and local thermal comfort at different overall thermal sensations and room air temperatures (at 0.6 m height) was investigated in a room served by displacement ventilation system. Sixty tropically acclimatized subjects performed sedentary office work for a period of 3 h during each session of the experiment. Nominal vertical air temperature gradients between 0.1 and 1.1 m heights were 1, 3 and 5 K/m while nominal room air temperatures at 0.6 m height were 20, 23 and 26 °C. Air velocity in the space near the subjects was kept at below 0.2 m/s. Relative humidity at 0.6 m height was maintained at 50%. It was found that temperature gradient had different influences on thermal comfort at different overall thermal sensations. At overall thermal sensation close to neutral, only when room air temperature was substantially low, such as 20 °C, percentage dissatisfied of overall body increased with the increase of temperature gradient. At overall cold and slightly warm sensations, percentage dissatisfied of overall body was non-significantly affected by temperature gradient. Overall thermal sensation had significant impact on overall thermal comfort. Local thermal comfort of body segment was affected by both overall and local thermal sensations.  相似文献   

5.
The performance of three hydronic skirting heating systems was investigated. The main focus of the study was to ascertain whether thermal skirting boards served by low-temperature supply flow were able to suppress strong downdraught. The evaluation was made for a two-person office room with mechanical ventilation. Computational Fluid Dynamics (CFD) simulations and three different draught rating models were employed to predict the level of thermal discomfort inside the room. CFD results were validated against several analytical calculations and four sets of experimental data presented in previous studies. Numerical simulations showed that all three skirting heating arrangements were able to cover transmission and ventilation thermal losses of the office room. Horizontal and vertical heat distribution inside the room was uniform for all heating systems. CFD simulations also showed that thermal skirting boards served by 40 and 45 °C supply flow had difficulty in reducing the velocity of the downdraught at ankle level. Consequently the draught rating in this region was around or slightly above 15% for these cases. In contrast, heat-emitting skirting boards supplied by 55 °C hot water showed a better ability to suppress downdraught, and the proportion of people sensing draught at 0.1 m above the floor was low. The conclusion of this study was that thermal performance of hydronic skirting heaters with low-temperature water supply must be improved in order to counter strong downdraughts, in particular where such systems may be combined with heat pumps of other low-valued sustainable energy sources.  相似文献   

6.
《Energy and Buildings》1995,23(2):73-81
Local thermal discomfort in offices with displacement ventilation is investigated using computational fluid dynamics. The standard κ-ϵ turbulence model is used for the prediction of indoor air flow patterns, temperature and moisture distributions, taking account of heat transfer by conduction, convection and radiation. The thermal comfort level and draught risk are predicted by incorporating Fanger's comfort equations in the airflow model. It has been found that for sedentary occupants with summer clothing common complaints of discomfort in offices ventilated with displacement systems result more often from an unsatisfactory thermal sensation level than from draught alone. It is shown that thermal discomfort in the displacement-ventilated offices can be avoided by optimizing the supply air velocity and temperature. It is also shown that optimal supply air conditions of a displacement system depend on the distance between the occupant and air diffuser.  相似文献   

7.
This paper presents a study of local thermal sensation (LTS) and comfort in a field environmental chamber (FEC) served by displacement ventilation (DV) system. The FEC, 11.12 m (L)×7.53 m (W)×2.60 m (H), simulates a typical office layout. A total of 60 tropically acclimatized subjects, 30 male and 30 female, were engaged in sedentary office work for 3 h. Subjects were exposed to three vertical air temperature gradients, nominally 1, 3 and 5 K/m, between 0.1 and 1.1 m heights and three room air temperatures of 20, 23 and 26 °C at 0.6 m height. The objective of this study is to investigate the mutual effect of local and overall thermal sensation (OTS) and comfort in DV environment. The results show that in a space served by DV system, at OTS close to neutral, local thermal discomfort decreased with the increase of room air temperature. The OTS of occupants was mainly affected by LTS at the arm, calf, foot, back and hand. Local thermal discomfort was affected by both LTS and OTS. At overall cold thermal sensation, all body segments prefer slightly warm sensation. At overall slightly warm thermal sensation, all body segments prefer slightly cool sensation.  相似文献   

8.
Personalized ventilation is expected to improve the quality of inhaled air and accommodate individual thermal preferences. In this paper, a chair-based personalized ventilation system is proposed that can potentially be applied in theatres, cinemas, lecture halls, aircrafts, and even offices. Air quality, thermal comfort, and the human response to this ventilation method were investigated by experiments. By comparing eight different air terminal devices (ATDs) it was found that up to 80% of the inhaled air could be composed of fresh personalized air with a supply flow rate of less than 3.0 l/s. Perceived air quality improved greatly by serving cool air directly to the breathing zone. Feelings of irritation and local drafts could be eliminated by proper designs. Personalized air with a temperature below that of room air was able to bring “a cool head” and increased thermal comfort in comparison with mixing ventilation. Massive applications of this chair-based personalized ventilation system can be envisaged in the future.  相似文献   

9.
The potential for improving occupants’ thermal comfort with personalized ventilation (PV) system combined with under-floor air distribution (UFAD) system was explored through human response study. The hypothesis was that cold draught at feet can be reduced when relatively warm air is supplied by UFAD system and uncomfortable sensation as “warm head” can be reduced by the PV system providing cool and fresh outdoor air at the facial level. A study with 30 human subjects was conducted in a Field Environmental Chamber. The chamber was served by two dedicated systems – a primary air handling unit (AHU) for 100% outdoor air that is supplied through the PV air terminal devices and a secondary AHU for 100% recirculated air that is supplied through UFAD outlets. Responses of the subjects to the PV-UFAD system were collected at various room air and PV air temperature combinations. The analyses of the results obtained reveal improved acceptability of perceived air quality and improved thermal sensation with PV-UFAD in comparison with the reference case of UFAD alone or mixing ventilation with ceiling supply diffuser. The local thermal sensation at the feet was also improved when warmer UFAD supply air temperature was adopted in the PV-UFAD system.  相似文献   

10.
In this study the influence of the personalized supply air temperature control strategy on energy consumption and the energy-saving potentials of a personalized ventilation system have been investigated by means of simulations with IDA-ICE software. GenOpt software was used to determine the optimal supply air temperature. The simulated office room was located in a cold climate. The results reveal that the supply air temperature control strategy has a marked influence on energy consumption. The energy consumption with personalized ventilation may increase substantially (in the range: 61-268%) compared to mixing ventilation alone if energy-saving strategies are not applied. The results show that the best supply air temperature control strategy is to provide air constantly at 20 °C. The most effective way of saving energy with personalized ventilation is to extend the upper room operative temperature limit (saving up to 60% compared to the reference case). However, this energy-saving strategy can be recommended only in a working environment where the occupants spend most of their time at their workstation. Reducing the airflow rate does not always imply a reduction of energy consumption. Supplying the personalized air only when the occupant is at the desk is not an effective energy-saving strategy.  相似文献   

11.
Individually controlled microenvironment has potential to satisfy more occupants in a space compared to a total volume uniform environment typically used at present. The performance of an individually controlled system comprising a convection-heated chair, an under-desk radiant heating panel, a floor radiant heating panel, an under-desk air terminal device supplying cool air, and a desk-mounted personalized ventilation as used and identified by 48 human subjects was studied using a thermal manikin at room temperatures of 20 °C, 22 °C and 26 °C. At a room air temperature of 20 °C, the maximum whole-body heating effect of the heating chair, the under-desk heating panel, and the floor heating panel corresponded to the effect of a room temperature increase of 5.2 °C, 2.8 °C, and 2.1 °C, respectively. The effect was 5.9 °C for the combination of the three heating options. The higher the room air temperature, the lower the heating effect of each heating option or heating combination. The maximum whole-body cooling effect of the tested system was only −0.8 °C at a room air temperature of 26 °C. The heating and cooling capacity of the individually controlled system were identified. These results, analyzed together with results obtained from human subject experiments, reveal that both the heating and the cooling capacity of the individually controlled system need to be increased in order to satisfy most occupants in practice.  相似文献   

12.
Performance of heat emitters in a room is affected by their interaction with the ventilation system. A radiator gives more heat output with increased air flow along its heat transferring surface, and with increased thermal difference to surrounding air. Radiator heat output and comfort temperatures in a small one-person office were studied using different positions for the ventilation air inlet. In two of the four test cases the air inlet was placed between radiator panels to form ventilation-radiator systems. Investigations were made by CFD (Computational Fluid Dynamics) simulations, and included visualisation of thermal comfort conditions, as well as radiator heat output comparisons. The room model was exhaust-ventilated, with an air exchange rate equal to what is recommended for Swedish offices (7 l s−1 per person) and cold infiltration air (−5 °C) typical of a winter day in Stockholm.Results showed that under these conditions ventilation-radiators were able to create a more stable thermal climate than the traditional radiator ventilation arrangements. In addition, when using ventilation-radiators the desired thermal climate could be achieved with a radiator surface temperature as much as 7.8 °C lower. It was concluded that in exhaust-ventilated office rooms, ventilation-radiators can provide energy and environmental savings.  相似文献   

13.
The functioning of a hydronic baseboard heating system with integrated air supply was analyzed. The aim was to investigate thermal performance of the system when cold outdoor (ventilation) airflow was forced through the baseboard heater. The performance of the system was evaluated for different ventilation rates at typical outdoor temperatures during the Swedish winter season. Three different analytical models and Computational Fluid Dynamics (CFD) were used to predict the temperature rise of the airflow inside the baseboard heater. Good agreement between numerical (CFD) and analytical calculations was obtained. Calculations showed that it was fully possible to pre-heat the incoming airflow to the indoor temperature and to cover transmission losses, using 45 °C supply water flow. The analytical calculations also showed that the airflow per supply opening in the baseboard heater needed to be limited to 7.0 l/s due to pressure losses inside the channel. At this ventilation rate, the integrated system with one air supply gave about 2.1 more heat output than a conventional baseboard heating system. CFD simulations also showed that the integrated system was capable of countering downdraught created by 2.0 m high glazed areas and a cold outdoor environment. Draught discomfort in the case with the conventional system was slightly above the recommended upper limit, but heat distribution across whole analyzed office space was uniform for both heating systems. It was concluded that low-temperature baseboard heating systems with integrated air supply can meet both international comfort requirements, and lead to energy savings in cold climates.  相似文献   

14.
《Building and Environment》2004,39(7):749-762
Measurements were carried out in an office-type experimental room ventilated by a floor return-type underfloor ventilation system to investigate the distributions of airflow velocity and air temperature. A fan-powered floor air unit (FAU) with rectangular supply and return air outlets covered by straight-profile linear bar-type air diffusers was installed to deliver the conditioned air in the experimental room. Turbulence intensity and draught rate distributions inside the room were also calculated by using the measured data. From the experimental results, it is found that undesirable high air velocities and high draught rates were created within a small region near the supply outlet of the FAU. Temperature differences between different height levels were maintained within an acceptable comfort level under the tested supply air conditions and heat loads. The results indicated that the temperature stratification could be maintained at an acceptable comfort level by designing the supply air conditions properly. A clearance zone is suggested as a design consideration for locating the FAUs and occupants to avoid undesirable draught discomfort to the occupants.  相似文献   

15.
Thermal environment that causes thermal discomfort may affect office work performance. However, the mechanisms through which occupants are affected are not well understood. This study explores the plausible mechanism linking room air temperature and mental alertness through perceptual and physiological responses in the tropics. Ninety-six young adults participated as voluntary subjects in a series of experiment conducted in the simulated office settings. Three room air temperatures, i.e. 20.0, 23.0 and 26.0 °C were selected as the experimental conditions. Both thermal comfort and thermal sensation changed significantly with time under all exposures (P < 0.0001). Longer exposure at 20.0 °C led to cooling sensations due to lower skin temperatures (P < 0.0001) and was perceived as the least comfortable. Nevertheless, this moderate cold exposure induced nervous system activation as demonstrated by the increase of α-Amylase level (P < 0.0001) and the Tsai–partington test (P < 0.0001). A mechanism linking thermal environment, occupants' responses and performance is proposed.  相似文献   

16.
Zhang's thermal comfort model [Zhang H. Human thermal sensation and comfort in transient and non-uniform thermal environments, Ph.D. thesis, UC Berkeley; 2003. 415 pp.] predicts that the local comfort of feet, hands, and face predominates in determining a person's overall comfort in warm and cool conditions. We took advantage of this in designing a task–ambient conditioning (TAC) system that heats only the feet and hands, and cools only the hands and face, to provide comfort in a wide range of ambient environments. Per workstation, the TAC system uses less than 41 W for cooling and 59 W for heating. We tested the TAC system on 18 subjects in our environmental chamber, at temperatures representing a wide range of practical winter and summer conditions (18–30 °C). A total of 90 tests were done. We measured subjects' skin and core temperatures, obtained their subjective responses about thermal comfort, perceived air quality, and air movement preference. The subjects performed three different types of tasks to evaluate their productivity during the testing. The TAC system maintains good comfort levels across the entire temperature range tested. TAC did not significantly affect the task performance of the occupants compared to a neutral ambient condition. Whenever air motion was provided, perceived air quality was significantly improved, even if the air movement was re-circulated room air. In our tests, subjects found thermal environments acceptable even if they were judged slightly uncomfortable (−0.5). By reducing the amount of control normally needed in the overall building, the TAC system saves energy. Simulated annual heating and cooling energy savings with the TAC system are as much as 40%.  相似文献   

17.
This paper aims at studying the energy impact of a chilled ceiling displacement ventilation CC/DV system aided with a personalized evaporative cooler (PEC) directed towards the occupant trunk and face. A simulation model is developed for integrating the personalized cooler with the ascending thermal plume. The thermal model of the conditioned room air around the person is integrated with a segmental bioheat and thermal comfort model to predict the human thermal comfort.The model is validated with experimental data on the vertical temperature distribution in the room, and the recorded overall comfort perceived by surveyed subjects. Experimental results agreed well with predicted values of temperature and comfort level. When using personalized cooling, the DV supply air temperature can be as high as 24 °C while the PEC at flow rates of 3–10 l/s achieved similar comfort with a DV system at supply temperature of 21 °C. At equal thermal comfort level, the integrated CC/DV system, PEC model resulted in up to 17.5% energy savings compared to the CC/DV system without a PEC. When mixed air is used in the CC/DV system additional 25% savings in energy is realized when compared with energy used for the 100% fresh air without the PEC.  相似文献   

18.
《Energy and Buildings》2002,34(8):829-836
Personalized ventilation (PV) aims to provide clean air to the breathing zone of occupants. Its performance depends to a large extent on the supply air terminal device (ATD). Five different ATDs were developed, tested and compared. A typical office workplace consisting of a desk with mounted ATDs was simulated in a climate chamber. A breathing thermal manikin was used to simulate a human being. Experiments at room air temperatures of 26 and 20 °C and personalized air temperatures of 20 °C supplied from the ATDs were performed. The flow rate of personalized air was changed from less than 5 up to 23 l/s. Tracer gas was used to identify the amount of personalized air inhaled by the manikin as well as the amount of exhaled air re-inhaled. The heat loss from the body segments of the thermal manikin was measured and used to calculate the equivalent temperature for the whole body as well as segments of the body. An index, personal exposure effectiveness, was used to assess the performance of ATDs in regard to quality of the air inhaled by the manikin. The personal exposure effectiveness increased with the increase of the airflow rate from the ATD to a constant maximum value. A further increase of the airflow rate had no impact on the personal exposure effectiveness. Under both isothermal and non-isothermal conditions the highest personal exposure effectiveness of 0.6 was achieved by a vertical desk grill followed by an ATD designed as a movable panel. The ATDs tested performed differently in regard to the inhaled air temperature used as another air quality indicator, as well as in regard to the equivalent temperature. The results suggest that PV may decrease significantly the number of occupants dissatisfied with the air quality. However, an ATD that will ensure more efficient distribution and less mixing of the personalized air with the polluted room air needs to be developed.  相似文献   

19.
个性化送风微环境的实验测试研究   总被引:1,自引:0,他引:1  
杨建荣  李先庭  A.Melikov 《暖通空调》2004,34(9):87-90,95
通过对人体模型测试和示踪气体测量,研究了一种个性化送风系统中风速、风温和污染物浓度随送风参数的变化状况,并预测了此系统微环境(人员呼吸区)中空气参数的改变程度。结果表明,个性化送风的灵活控制有助于改善局部热环境和空气品质,且呼吸区空气品质的改善程度与送风量、送风距离和人体周围的热羽流均紧密相关。  相似文献   

20.
A model for displacement ventilation system based on plume rise of single point heat source was developed. The errors for temperature gradient ratio were less than 6% in most cases. Errors for temperature gradient and displacement zone height were relatively higher (up to 28.1%) which might be due to the derivation of the parameters from experimental data. Still, the errors were lower than those from design model/method of some other workers (68.5% for the temperature gradient ratio and 15.7% for the temperature difference between the supply air and at 0.1 m above floor level). With a room height of 2.4 m (common for office in Hong Kong) and design room temperature 25.5 °C defined at 1.1 m above floor level under the normal load to air flow ratio of 12,000 W/m3/s (typical values for sub-tropical region) and minimum supply temperature of 18 °C, there existed a zone capacity range from 1000 to 5000 W that stand alone operation displacement ventilation system was feasible and that the displacement zone height (minimum 2.2 m) was above normal breathing level. The feasible zone capacity range diminished with decrease in design room temperature and/or room height. In this case, the load to air flow ratio had to be reduced, resulting in a higher flow rate when compared to a mixing ventilation system, or an auxiliary cooling facility such as a chilled ceiling had to be used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号