首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A quantitative assessment of the environmental impact of construction activities can help decision-makers identify major environmental impact factors and make environmentally friendly construction plans in the early stages of construction. This paper presents an integrated life cycle environmental impact assessment model that is applicable to construction phase studies, where impact factors are examined according to two aspects of a typical construction process: construction equipment and ancillary materials. Environmental impacts are categorized into three safeguard subjects: ecosystems, natural resources and human health. A disability adjusted life year (DALY) model for assessing human health damage due to construction dust is developed. In addition, the environmental impact of earthwork construction is assessed as a case study to demonstrate the application of the proposed model. Results indicate that the proposed model can effectively quantify the environmental impacts of construction processes, and can potentially be used as a tool for contractors to select environmentally friendly construction plans.  相似文献   

2.
Energy consumption in dwellings contributes significantly to their total negative environmental impact. This paper quantitatively assesses the environmental impact of building-related and user-related gas and electricity consumption in a Dutch apartment dwelling using life cycle assessment (LCA) methodology. Several scenarios for gas and electricity consumption are compared to assess what effect changes in building characteristics and user behaviour have on the environmental impacts of energy consumption. This study shows that gas consumption significantly contributes to four environmental impact categories, which can be most effectively countered by reducing the heat demand of the dwelling. A 23% reduction in gas consumption leads to up to 13% less overall environmental impacts. Particularly in buildings with low heat demand, electricity consumption dominates all environmental impact categories. These can most effectively be reduced by changing the electricity demand of the user: 47% less electricity consumption leads to a 9–45% reduction in the total environmental impact. However, since electricity consumption continues to rise, the environmental effects of electricity use may be better reduced by changing the environmental impact of the electricity supply. Theoretically, when electricity consumption remains the same, over 90% less environmental impact could be reached by using 100% wind power to generate electricity.  相似文献   

3.
This paper presents a building environmental performance analysis system—BEPAS, which was developed based on the life cycle assessment (LCA) framework. In BEPAS, environmental impacts were investigated in three main aspects of a building that were closely related to environmental performance—building facilities, building materials and location. In addition, a set of environmental databases were developed, covering the environmental performance profiles of these environmental aspects. The BEPAS can be used to assess the environmental performance of a new or existing building. This paper also discusses a case project in order to illustrate the assessment procedures and test the effectiveness of the system in application.  相似文献   

4.
Heating and cooling systems consume the most energy and are the largest source of emissions in the entire life cycle of a house. This study compares the life cycle impacts of three residential heating and cooling systems—warm-air furnace and air-conditioner, hot water boiler and air-conditioner, and air–air heat pump over a 35-year study period. Simulation and life cycle assessment studies of the systems at four locations in the United States, namely Minnesota, Oregon, Pennsylvania and Texas determine the effect of regional variations in climate, energy mix, and the standard building characteristics on the systems’ environmental impacts.  相似文献   

5.
Janssen MP 《Indoor air》2003,13(2):118-127
Indoor radon concentrations were estimated for various ventilation conditions, the differences being mainly related to the airtightness of the dwelling and the ventilation behavior of its occupants. The estimations were aimed at describing the variation in air change rates and radon concentrations to be expected in the representative newly built Dutch dwellings and identifying the most important parameters determining air change rate and indoor radon concentration. The model estimations were compared with measurements. Most of the air was predicted to enter the model dwelling through leaks in the building shell, independent of the ventilation conditions of the dwelling. Opening the air inlets was shown to be an efficient way to increase infiltration and thus to decrease radon concentration. The effect of increasing the mechanical ventilation rate was considerably less than opening the air inlets. The mechanical ventilation sets the lower limit to the air change rate of the dwelling, and is effective in reducing the radon concentration when natural infiltration is low. Opening inside doors proved to be effective in preventing peak concentrations in poorly ventilated rooms. As the airtightness of newly built dwellings is still being improved, higher radon concentrations are to be expected in the near future and the effect of occupant behavior on indoor radon concentrations is likely to increase. According to the model estimations soil-borne radon played a moderate role, which is in line with measurements.  相似文献   

6.
The use of dwellings contributes significantly to human-induced environmental burden in a number of ways, including energy consumption and the maintenance and replacement of building components. The present study deals with the maintenance and replacement of external doors and windows in a Dutch reference dwelling and describes how life cycle assessment (LCA) methodology can be applied to quantitatively assess the environmental impact of various maintenance scenarios for the façade components. First, the most effective way to reduce the negative environmental impact in this context is to replace existing single and double glazing with high efficiency double glazing, thereby reducing energy consumption for space heating. Second, the use of timber frames causes less environmental impact than PVC frames with a steel core. Third, extending the service life of building components decreases the input of material resources, production processes and the waste processing of building components during the service life of a dwelling, which is beneficial to the environment. Maintenance activities should only be performed when needed, keeping the building components in good condition while minimising the transportation movements of maintenance workers. Finally, protecting timber components with an alternative paint that contains less solvent does not lower the assessed environmental impact, but low-solvent paint may be preferred because of health aspects both for maintenance workers and occupants of the dwelling.  相似文献   

7.
The paper deals with improvements on environmental significant activities related to the life supporting function “building and housing”, using life cycle assessment (LCA). In the calculation, back-casting technique is utilised and implies to a future scenario, based on known technology. Besides heating, waste water treatment is a significant issue, according to the definition of building and housing function practised. The main conclusions from the assessment are that rebuilding is an environmentally better choice than the construction of a new building, if the same essential environmentally related functional performance is reached. Furthermore, the case study and the national estimates performed prove that the potential environmental impact can be reduced by about 70% for the heating service and 75% for the waste water system, if the suggested measures are performed.  相似文献   

8.
Bayer P  Heuer E  Karl U  Finkel M 《Water research》2005,39(9):1719-1728
Technical constraints can leave a considerable freedom in the design of a technology, production or service strategy. Choosing between economical or ecological decision criteria then characteristically leads to controversial solutions of ideal systems. For the adaptation of granular-activated carbon (GAC) fixed beds, various technical factors determine the adsorber volume required to achieve a desired service life. In considering carbon replacement and recycling, a variety of refill strategies are available that differ in terms of refill interval, respective adsorber volume, and time-dependent use of virgin, as well as recycled GAC. Focusing on the treatment of contaminant groundwater, we compare cost-optimal reactor configurations and refill strategies to the ecologically best alternatives. Costs and consumption of GAC are quantified within a technical-economical framework. The emissions from GAC production out of hard coal, transport and recycling are equally derived through a life cycle impact assessment. It is shown how high discount rates lead to a preference of small fixed-bed volumes, and accordingly, a high number of refills. For fixed discount rates, the investigation reveals that both the economical as well as ecological assessment of refill strategies are especially sensitive to the relative valuation of virgin and recycled GAC. Since recycling results in economic and ecological benefits, optimized systems thus may differ only slightly.  相似文献   

9.
The introduction of natural gas in the Greek energy market broadened the options in the field of space heating. Residents in five major Greek cities can choose from a variety of different fuels and systems for heating their houses or working spaces; 12 more cities will be connected to the gas network within the next 5 years. Considering that space heating is the major energy consuming activity in the Greek building sector and that the environmental constrains imposed by the Kyoto protocol will be met only with difficulty, if at all, a strategy concerning the developments in space heating seems to be necessary. This however presupposes an elaborate analysis of the overall performance of the alternative systems, taking into consideration the particular conditions of the Greek energy system and the ‘established’ way of designing residential and mixed-use buildings. The present paper aims to present the empirical comparative results related to the three most popular heating systems operated in Greek multi-apartment and mixed-use buildings, which use three different fuels, respectively: a central oil-fired boiler, a unitary gas-fired boiler and unitary heat pumps.  相似文献   

10.
桥梁生命周期环境影响的多级模糊综合评价   总被引:6,自引:0,他引:6  
为了量化评价桥梁的综合环境影响,提出了桥梁生命周期环境影响的多级模糊综合评价方法。在分析桥梁的设计、原材料的生产加工、现场的施工、桥梁的运营、桥梁的废弃这生命周期5个阶段环境影响的基础上,按照客观性、科学性、完整性、有效性等原则建立了多级综合评价指标体系。将桥梁生命周期环境影响分为负面影响较大、负面影响较小、基本无影响、正面影响较小、正面影响较大5个等级,采用改进的层次分析法确定权重,并引入模糊数学方法进行综合评价。应用该方法对武汉市南太子湖大桥生命周期环境影响进行分析评价。结果表明,原材料生产和桥梁施工过程对环境影响较大。该方法可作为桥梁生命周期环境影响评价的基本方法,用于桥梁工程环境影响综合评价。  相似文献   

11.
Ventilation in Scandinavian buildings is commonly performed by means of a constant flow ventilation fan. By using a regulated fan, it is possible to make a seasonal adjustment of outdoor ventilation flow. Energy saving can be achieved by reducing the mechanical ventilation flow during the heating season, when natural ventilation driven by temperature differences between outdoor and indoor is relatively high. This ventilation principle has been called 'seasonally adapted ventilation (SAV)'. The aim was to study if a 25-30% reduction of outdoor ventilation flow during heating season influenced sick building syndrome (SBS) and the perception of the indoor environment. This was done in a 1-year cross-over intervention study in 44 subjects in a multi-family building. During the first heating season (November to April), one part of the building (A) got a reduced flow during the heating season [0.4-0.5 air exchanges per hour (ACH)] while the other part (B) had constant flow (0.5-0.8 ACH). The next heating season, part A got constant flow, while part B got reduced ventilation flow. Reduced ventilation increased the relative air humidity by 1-3% in the living room (mean 30-37% RH), 1-5% in the bathroom (mean 48-58% RH) during heating season. The room temperature increased 0.1-0.3 degrees C (mean 20.7-21.6 degrees C), mean carbon dioxide (CO2) concentration in the bedroom increased from 920 to 980 p.p.m. at reduced flow. The indoor air quality was perceived as poorer at reduced outdoor airflow, both in the bedroom and in the apartment as a whole. There was a significant increase of stuffy odor (P = 0.05) at reduced outdoor airflow and the indoor air quality was perceived as poorer, both in the bedroom (P = 0.03) and in the apartment as a whole (P = 0.04). No significant influence on SBS symptoms or specific perceptions such as odors, draught, temperature, air dryness or stuffy air could be detected. In conclusion, reducing the ventilation flow in dwellings to a level below the current Swedish ventilation standard (0.5 ACH) may cause a perception of impaired air quality. Technical measurements could only demonstrate a minor increase of indoor temperature, relative air humidity, and bedroom CO2 concentration. This illustrates that it is important to combine technical measurements with a longitudinal evaluation of occupant reactions, when evaluating energy-saving measures. PRACTICAL IMPLICATIONS: It is important to combine technical measurements with a longitudinal evaluation of occupant reactions, when evaluating energy-saving measures. Reduction of outdoor airflow in dwellings below the current ventilation standard of 0.5 ACH may lead to a perception of impaired air quality, despite only a minor increase of bedroom CO2-concentration.  相似文献   

12.
In heating mode, fresh air is still essential for a chilled panel system in order to ensure the indoor air quality. In this paper, a chilled ceiling panel system was designed and built in a typical office room. The thermal environment and thermal comfort in the room were fully measured and evaluated by using the Fanger's PMV-PPD model and the standard of ISO 7730 respectively, when room was heated in two modes, one of which is the chilled panel heating mode and the other of which is the combined heating mode of chilled panel and supply air. The research results indicate that in the combined mode, ceiling ventilation improves the general thermal comfort and reduces the risk of local discomfort. Under the condition of same general thermal comfort, the heating supply upper limit of chilled panel can be increased by 12.3% because of air mixing effect caused by introduction of air ventilation.  相似文献   

13.
陈雄  周仲伟  朱云 《华中建筑》2014,(12):42-46
对建筑业而言,寿命周期评价不仅是一种评估工具,更是一种设计思想和设计方法。该文简要介绍了寿命周期理论,对建筑系统寿命周期内的物质体系和功能体系进行综合评价和分析,指出保持建筑材料可持续利用和提高建筑资源综合利用率是可持续建筑设计的必然选择,并总结探讨了建筑材料可持续利用的相关设计策略。  相似文献   

14.
粉煤灰再生混凝土生命周期评价初探   总被引:9,自引:0,他引:9  
本文使用生命周期评价(LCA)方法对掺与不掺粉煤灰的再生混凝土的环境影响进行评价。研究表明,再生混凝土是一种很好的环境材料(ecomaterial)。粉煤灰的掺入可以提高再生混凝土的绿色度。不掺粉煤灰的再生混凝土可以有效的减少油耗、CO、CxHy以及废弃物的排放,但并不能有效的减少混凝土的煤耗、CO2、NOx以及SO2排放置;而通过掺入粉煤灰可使再生混凝土的各项污染指标均得到有效的降低。  相似文献   

15.
Life cycle management (LCM) can be applied to the whole construction process, thus making it possible to improve sustainability indicators and also minimize the environmental loads of the full building life cycle. To illustrate this, a case study has been carried out based on the application of the LCM approach to a typical Spanish Mediterranean house located in Barcelona with a total area of 160 m2 and a projected 50-year life span, which has been modeled according to the Spanish building technical code (CTE). The aim of this research is to use sustainability indicators in the pre-construction and operation (use and maintenance) phases and also to promote and support the adoption of the LCM within the construction industry. This paper concludes that regarding the significant environmental issue of climate change, there was a total emission of 2.34E03 kg CO2-Eq/m2 per 50 years, of which about 90.5% was during the operation phase (use 88.9% and maintenance 1.7%) and the pre-construction phase account for a total of 9.5%. In terms of this dwelling's environmental loads, the operation phase is the most critical because of the high environmental loads from energy consumption for heating, ventilation and air conditioning (HVAC), lighting, electrical appliances and cooking.  相似文献   

16.
This paper presents a comparison of environmental impacts of two residential heating systems, a hot water heating (HWH) system with mechanical ventilation and a forced air heating (FAH) system. These two systems are designed for a house recently built near Montreal, Canada. The comparison is made with respect to the life-cycle energy use, the life-cycle greenhouse gas (GHG) emissions, the expanded cumulative exergy consumption (ECExC), the energy and exergy efficiencies, and the life-cycle cost. The results indicate that the heating systems cause marginal impacts compared with the entire house in the pre-operating phase. In the operating phase, on the other hand, they cause significant environmental impacts. The HWH systems with a heat recovery ventilator (HRV) using either electricity or natural gas have the lowest life-cycle energy use and lowest ECExC. The HWH and FAH systems using electricity as energy source have the lowest GHG emissions. Finally, the FAH systems have, on the average, a lower life-cycle cost than the HWH systems.  相似文献   

17.
The present paper deals with an analysis of the building integrated photovoltaic thermal (BIPVT) system fitted as rooftop of a building to generate electrical energy higher than that generated by a similar building integrated photovoltaic (BIPV) system and also to produce thermal energy for space heating. A thermodynamic model has been developed to determine energy, exergy and life cycle cost of the BIPVT system. The results indicate that although the mono-crystalline BIPVT system is more suitable for residential consumers from the viewpoint of the energy and exergy efficiencies, the amorphous silicon BIPVT system is found to be more economical. The energy and exergy efficiencies of the amorphous silicon BIPVT system are found to be 33.54% and 7.13% respectively under the composite climatic conditions prevailing at New Delhi. The cost of power generation is found to be US $ 0.1009 per kWh which is much closer to that of the conventional grid power.  相似文献   

18.
Wooden type of housing is ubiquitous in Japan. It is the main structure for housing; however, due to the increase in residential developments, steel reinforced concrete houses are also on the rise. This paper assesses the environmental impacts of these two types of construction. An evaluation of the two types of construction in terms of energy usage and air emissions is done. A comparison of the damage costs due to the generated emissions is also considered. Four types of emissions generated are evaluated, namely carbon emissions (CO2), nitrogen oxides (NOx), sulfur oxides (SOx) and suspended particulate matter (SPM). The life cycle of the two different housing construction types is traced and environmental impacts are determined. External costs are also calculated. Furthermore, different improvement assessment scenarios are simulated to ascertain several emission reduction possibilities. The study looks into the emitted emissions from the housing construction to its final disposal of a typical residential development in Saga, Japan. Results show that much of the environmental impacts from building a house are on the Global Warming Potential due to high carbon emissions. Moreover, the construction phase generated the highest pollutant emissions from nitrogen oxides, sulfur oxides and suspended particulate matter. Steel reinforced concrete (SRC) construction has a higher environmental impact compared to the wooden type of housing construction. A longer design life for a residential house gives a reduction of about 14% in carbon emissions. Using solar energy for the operation phase has gained a reduction of 73% in the total life cycle carbon emissions.  相似文献   

19.
There is a growing interest in comparing the energy and consequential carbon embodied in buildings using different methods of construction and alternative materials. This paper compares the embodied carbon in a low energy, affordable house constructed using a novel offsite panellised modular timber frame system, in Norfolk UK with two traditional alternative scenarios. A lifecycle assessment (LCA) framework is used to conduct a partial LCA, from cradle to site, of the construction. An inventory of the materials and fossil fuel energy utilised in the construction was used to calculate the primary energy consumed and the associated embodied carbon. The embodied carbon was found to be 34.6 tonnes CO2 for a 3 bedroom semi-detached house, 405 kgCO2 per m2 of useable floor area. When compared with traditional methods of construction the modern methods of construction (MMC) house resulted in a 34% reduction in embodied carbon. Despite timber being the predominant structural and cladding material, concrete is the most significant material (by proportion) in embodied carbon terms, responsible for 36% of materials related embodied carbon.  相似文献   

20.
Ecological sanitation (EcoSan) concepts, relying on an environmentally sound management of water, nutrient and energy fluxes, have been poorly characterized in literature and are widely ignored by public planning authorities, architects or engineers. A comparative life cycle assessment (LCA) of an EcoSan system at an office building and of conventional systems was carried out in order to provide practical data and information to (partially) fill this gap. Compared to conventional systems, EcoSan can reduce the contribution to ecosystem quality damage by more than 60%. EcoSan leads, however, to higher damages on resources and human health and higher impact on climate change. Key improvement possibilities and research needs related to these results are discussed throughout the paper. Ecological sanitation appears to be a promising alternative to small-scale wastewater treatment. At higher scales, low water consumption conventional systems are better performing and are not likely to be replaced by EcoSan systems in the short term. Standard conventional systems have very poor environmental performances and should be upgraded as far as possible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号