共查询到20条相似文献,搜索用时 15 毫秒
1.
With the actual environmental issues of energy savings in buildings, there are more efforts to prevent any increase in energy use associated with installing air-conditioning systems. The actual standard of thermal comfort in buildings ISO 7730 is based on static model that is acceptable in air-conditioned buildings, but unreliable for the case of naturally ventilated buildings. The different field studies have shown that occupants of naturally ventilated buildings accept and prefer a significantly wider range of temperatures compared to occupants of air-conditioned buildings. The results of these field studies have contributed to develop the adaptive approach. Adaptive comfort algorithms have been integrated in EN15251 and ASHRAE standards to take into account the adaptive approach in naturally ventilated buildings. These adaptive algorithms seem to be more efficient for naturally ventilated buildings, but need to be assessed in field studies. This paper evaluates different algorithms from both static and adaptive approach in naturally ventilated buildings across a field survey that has been conducted in France in five naturally ventilated office buildings. The paper presents the methodology guidelines, and the thermal comfort algorithms considered. The results of application of different algorithms are provided with a comparative analysis to assess the applied algorithms. 相似文献
2.
This field study was conducted during summer 2009 in Harbin, northeast of China in order to investigate human responses to the thermal conditions in naturally ventilated residential buildings in cold climate. We visited 257 families in six residential communities and collected 423 sets of physical data and subjective questionnaires. The neutral temperature is 23.7 °C, with the clothing insulation of 0.54 clo. The neutral temperature in Harbin is lower than neutral temperatures in warm climates by others, which is in accordance with the thermal adaptive model. 80% of the occupants can accept the air temperature range of 21.5-31.0 °C, which is wider than the summer comfort temperature limits by the adaptive model. The preferred temperature range fell between 24.0 °C and 28.0 °C. About 57.9% of the subjects voted “no change” with the humid range of 40% and 70%. 61.5% of the occupants voted “no change” with the air velocity within the range of 0.05-0.30 m/s. In summer, occupants preferred air velocity of lower than 0.25 m/s even at higher indoor temperature, which is different from the other field studies. The Harbin occupants in naturally ventilated dwellings can achieve thermal comfort by operable windows instead of running air-conditioners. 相似文献
3.
Parametric studies of facade designs for naturally ventilated residential buildings in Singapore were carried out to optimize facade designs for better indoor thermal comfort and energy saving. Two criteria regarding indoor thermal comfort for naturally ventilated residential buildings are used in this study. To avoid the perception of thermal asymmetry, temperature difference between mean radiant temperature and indoor ambient air temperature should be less than 2 °C [F.A. Chrenko, Heated ceilings and comfort. J. Inst. Heat. Ventilating Eng. 20 (1953) 375–396; F.A. Chrenko, Heated ceilings and comfort. J. Inst. Heat. Ventilating Eng. 21 (1953) 145–154]. Thermal comfort regression model for naturally ventilated residential buildings in Singapore was used to evaluate various facade designs either. Facade design parameters: U-values, orientations, WWR (window to wall ratio) and shading device lengths are considered in the investigation. The building simulation results for a typical residential building in Singapore indicated that the U-value of facade materials for north and south orientations should be less than 2.5 W/m2 K and the U-value of facade materials for north and south orientations should be less than 2 W/m2 K. From the coupled simulation results, it was found that the optimum window to wall ratio is equal to 0.24. Optimum facade designs and thermal comfort indexes are summarized for naturally ventilated residential buildings in Singapore. 相似文献
4.
An active facade is often used to promote the flow of air through a building, however in order to ensure that this process is effective the facade should face a southerly orientation. This means that not only solar energy is transferred across the glazing but in sunny periods shading is needed to prevent excess brightness levels occurring on the working areas where it may result in the luminance distributions not complying with current lighting requirements. The building investigated is located in Sheffield, England and is one of the University of Sheffield's recently built green buildings. It has a high thermal mass which is used to promote the use of night cooling. This paper reports the initial findings of an internal assessment of the thermal comfort and daylighting conditions in such a building. The results have indicated that such designs are to be commended for their passive use of solar energy and can provide a high quality working environment. 相似文献
5.
以广州地区自然通风体育馆为研究对象,用问卷和实测的方式分别采集了建筑内运动人群及观众人群的热感觉投票值和室内外热环境参数,初步建立了这两类人群的适应性热舒适模型和对应的热舒适范围。并通过对比,分析了两类人群的适应性热舒适模型和热舒适范围的区别。研究结果表明:自然通风体育馆室内运动人群的热敏感度0.326 6要小于观众人群的热敏感度0.379 9;运动人群和观众人群的中性操作温度都随着室外温度的升高而升高,前者中性操作温度高于后者,差值在0.80~1.48℃之间;运动人群和观众人群热舒适范围的上下限都随着室外温度的升高而升高,前者热舒适范围的下限与后者相似,但是前者热舒适范围的上限比后者高,差值在1.86~2.48℃之间。 相似文献
6.
G.M. Stavrakakis D.P. Karadimou P.L. Zervas H. Sarimveis N.C. Markatos 《Building and Environment》2011
The present paper presents a novel computational method to optimize window sizes for thermal comfort and indoor air quality in naturally ventilated buildings. The methodology is demonstrated by means of a prototype case, which corresponds to a single-sided naturally ventilated apartment. Initially, the airflow in and around the building is simulated using a Computational Fluid Dynamics model. Local prevailing weather conditions are imposed in the CFD model as inlet boundary conditions. The produced airflow patterns are utilized to predict thermal comfort indices, i.e. the PMV and its modifications for non-air-conditioned buildings, as well as indoor air quality indices, such as ventilation effectiveness based on carbon dioxide and volatile organic compounds removal. Mean values of these indices (output/objective variables) within the occupied zone are calculated for different window sizes (input/design variables), to generate a database of input–output data pairs. The database is then used to train and validate Radial Basis Function Artificial Neural Network input–output “meta-models”. The produced meta-models are used to formulate an optimization problem, which takes into account special constraints recommended by design guidelines. It is concluded that the proposed methodology determines appropriate windows architectural designs for pleasant and healthy indoor environments. 相似文献
7.
The distinctions between natural ventilation and mechanical ventilation system are explained. With the testing result of natural ventilation system of an office building in Shanghai, the irrationality of using energy-utilization coefficient to evaluate one natural ventilation system is discussed. Based on thermal comfort of natural ventilation environment, an evaluation method is then established and used to evaluate the testing result. 相似文献
8.
The influence of the supply air temperature on the mean local air age and thermal comfort of a typical individual office under stratum ventilation is investigated by a numerical method, which is validated by an experiment carried out by the authors. The results show that for an office, when the supply air temperature is increased from 19 °C to 21 °C, the corresponding mean occupied zone temperature rises from 24.5 °C to 26.5 °C. The inhaled air quality for the occupant is improved when supply air temperature rises from 19 °C to 21 °C. Also, the thermal comfort indices (predicted mean vote or PMV, predicted percentage of dissatisfied or PPD and predicted dissatisfied or PD) fulfill the requirements of ISO 7730 and CR 175 1998. For summer cooling operation, stratum ventilation may offer a feasible solution to elevated indoor temperatures, which are recommended by several governments in East Asia. 相似文献
9.
Daechung, a semi-open space with wooden floor located between the front and backyards of traditional Korean residences, is well known as a cool space in summer due to cross-ventilation, but it has not yet been scientifically explained thoroughly. The purpose of this paper is to characterize the wind flow measured at a Daechung to interpret the effects of the wind characteristics on thermal comfort. We measured 10-Hz turbulence data at the Daechung and partitioned the wind vector into two directions (i.e. backyard to Daechung and front yard to Daechung). Interestingly, the wind from the cool backyard flowing through the Daechung was of less frequency and shorter duration but had higher velocity compared to wind from the opposite direction, which can provide thermal comfort to the dwellers. We suggest that the wind characteristics were determined by various aspects of the house's design, such as its location and the degree of enclosure in front and backyards. The results show that traditional Korean house made use of a natural ventilation system during the summer. The principles of this system could be helpful in constructing environmentally friendly and sustainable residences. 相似文献
10.
通风降温建筑室内热环境模拟及热舒适研究 总被引:15,自引:0,他引:15
将热舒适评价标准PMV/PPD模型与建筑动态热模拟及计算流体动力学(CFD)模拟相结合,分别对重庆地区自然通风房间和埋管送风通风房间进行了室内气候及热舒适性模拟与分析,结果表明,埋管系统通风降温可以改善炎热地区的室内热舒适性。 相似文献
11.
The objective of this study was to develop an adaptive thermal comfort equation for naturally ventilated buildings in hot-humid climates. The study employed statistical meta-analysis of the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) RP-884 database, which covered several climatic zones. The data were carefully sorted into three climate groups including hot-humid, hot-dry, and moderate and were analyzed separately. The results revealed that the adaptive equations for hot-humid and hot-dry climates were analogous with approximate regression coefficients of 0.6, which were nearly twice those of ASHRAE and European standards 55 and EN15251, respectively. The equation using the daily mean outdoor air temperature had the highest coefficient of determination for hot-humid climate, compared with other mean temperatures that considered acclimatization of previous days. Acceptable comfort ranges showed asymmetry and leaned toward operative temperatures below thermal neutrality for all climates. In the hot-humid climate, a lower comfort limit was not observed for naturally ventilated buildings, and the adaptive equation was influenced by indoor air speed rather than indoor relative humidity. The new equation developed in this study can be applied to tropical climates and hot-humid summer seasons of temperate climates. 相似文献
12.
The coupling strategies for natural ventilation between building simulation (BS) and computational fluid dynamics (CFD) are discussed and coupling methodology for natural ventilation is highlighted. Two single-zone cases have been used to validate coupled simulations with full CFD simulations. The main discrepancy factors have also been analyzed. The comparison results suggest that for coupled simulations taking pressure from BS as inlet boundary conditions can provide more accurate results for indoor CFD simulation than taking velocity from BS as boundary conditions. The validation results indicate that coupled simulations can improve indoor thermal environment prediction for natural ventilation taking wind as the major force. With the aids of developed coupling program, coupled simulations between BS and CFD can effectively improve the speed and accuracy in predicting indoor thermal environment for natural ventilation studies. 相似文献
13.
Nabeeha Amatullah Azmi Azhaili Baharun M sl m Arıcı Siti Halipah Ibrahim 《建筑学研究前沿(英文版)》2023,12(2):361-385
Mosques have intermittent operational schedules with short-term occupancy during the five daily prayers. The occupancy level of the daily prayers is a fraction compared to the mandatory Friday prayers with full occupancy. Usually, the same thermal control mechanism is operated within the same large prayer hall to maintain the thermal comfort of the occupants. Yet, the comfort requirements are often not met due to the short span of operation during prayer times. Nevertheless, mosques have a very high energy usage as the same energy-intensive system is operated even during minimal occupancy profiles. The current research aims at using a passive approach towards design to achieve the comfort conditions during the low occupancy daily prayer times without employing mechanical intervention. Numerical simulations are carried out on a validated model of the case study building to investigate the impact of the west-facing Qiblah wall as the congregation stands in proximity to this wall. The design alternatives are tested in conjunction with ventilation strategies to holistically assess the thermal comfort of the occupants. Results show that as much as 4–6°C reduction in indoor wall surface temperature can be achieved with a suitable Qiblah wall design, which reduces the mean radiant temperature of the occupants by 2–4°C. Combined with ventilation strategies, thermal comfort can be significantly improved by at least 40% for the prayers during the hottest times of the day, and as much as 80% for night-time prayers. Results suggest that suitable comfort conditions can be achieved without the need for air-conditioning for at least two or three of the five daily prayers. 相似文献
14.
Anastasia D. Stavridou 《建筑学研究前沿(英文版)》2015,4(2):127
This study explores architectural design by examining air, fluid mechanics, and the natural ventilation of buildings. In this context, this research introduces a new way of dealing with the process of architectural synthesis. The proposed way can be used either to create new architectural projects or to rethink existing ones. This study is supported by previous investigation into the natural ventilation of buildings via computational and laboratory simulation (Stavridou, 2011; Stavridou and Prinos, 2013). The investigation into the natural ventilation of buildings provides information and data that affect architectural design through various parameters. The parameters of architectural synthesis that are influenced and discussed in this paper are the following: (i) inspiration and analogical transfer, (ii) initial conception of the main idea using computational fluid dynamics (digital design), (iii) development of the main idea through an investigatory process toward building form optimization, and (iv) form configuration, shape investigation, and other morphogenetic prospects. This study illustrates the effect of natural ventilation research on architectural design and thus produces a new approach to the architectural design process. This approach leads to an innovative kind of architecture called “breathing architecture.” 相似文献
15.
Theatres are the most complex of all auditorium structures environmentally. They usually have high heat loads, which are of a transient nature as audiences come and go, and from lighting which changes from scene to scene, and they generally have full or nearly full occupancy. Theatres also need to perform well acoustically, both for the spoken word and for music, and as sound amplification is less used than in other auditoria, background noise control is critically important. All these factors place constraints on the ventilation design, and if this is poor, it can lead to the deterioration of indoor air quality and thermal comfort. To analyse the level of indoor air quality and thermal comfort in a typical medium-sized mechanically ventilated theatre, and to identify where improvements could typically be made, a comprehensive post-occupancy evaluation study was carried out on a theatre in Belgrade. The evaluation, based on the results of monitoring (temperature, relative humidity, CO2, air speed and heat flux) and modelling (CFD), as well as the assessment of comfort and health as perceived by occupants, has shown that for most of the monitored period the environmental parameters were within the standard limits of thermal comfort and IAQ. However, two important issues were identified, which should be borne in mind by theatre designers in the future. First, the calculated ventilation rates showed that the theatre was over-ventilated, which will have serious consequences for its energy consumption, and secondly, the displacement ventilation arrangement employed led to higher than expected complaints of cold discomfort, probably due to cold draughts around the occupants’ feet. 相似文献
16.
The impacts of ventilation strategies and facade on indoor thermal environment for naturally ventilated residential buildings in Singapore 总被引:1,自引:0,他引:1
The impacts of various ventilation strategies and facade designs on indoor thermal environment for naturally ventilated residential buildings in Singapore are investigated in this study based on thermal comfort index. Four ventilation strategies, nighttime-only ventilation, daytime-only ventilation, full-day ventilation and no ventilation were evaluated for hot-humid climate according to the number of thermal discomfort hours in the whole typical year on the basis of a series of TAS simulations. Parametric studies of facade designs on orientations, window to wall ratios and shading devices were performed for two typical weeks by coupled simulations between building simulation ESP-r and CFD (FLUENT). The results indicate that full-day ventilation for indoor thermal comfort is better than the other three ventilation strategies. With various facade design studies, it was found that north- and south-facing facades can provide much comfortable indoor environment than east- and west-facing facades in Singapore. It is recommended that optimum window to wall ratio 0.24 can improve indoor thermal comfort for full-day ventilation and 600 mm horizontal shading devices are needed for each orientation in order to improve thermal comfort in further. 相似文献
17.
In earlier work [1], NIST developed a climate suitability analysis method to evaluate the potential of a given location for direct ventilative cooling and nighttime ventilative cooling. The direct ventilative cooling may be provided by either a natural ventilation system or a fan-powered economizer system. The climate suitability analysis is based on a general single-zone thermal model of a building configured to make optimal use of direct and/or nighttime ventilative cooling. This paper describes a new tool implementing this climate suitability methodology and its capability to consider an adaptive thermal comfort option and presents results from its application to analyze a variety of U.S. climates. The adaptive thermal comfort option has the potential to substantially increase the effectiveness of natural ventilation cooling for many U.S. cities. However, this impact is very dependent on the acceptable humidity range. If a dewpoint limit is used, the increase is significant for a dry climate such as Phoenix but much smaller for humid climates such as Miami. While ASHRAE Standard 55 does not impose a limit on humidity when using the adaptive thermal comfort option, the necessity of limiting humidity for other reasons needs to be considered. 相似文献
18.
This study investigates the effectiveness of night ventilation technique for residential buildings in hot-humid climate of Malaysia. This paper firstly presents the results of a survey on usage patterns of windows and air-conditioners in typical Malaysian residential areas. Secondly, the effects of different natural ventilation strategies on indoor thermal environment for Malaysian terraced houses are evaluated based on the results of a full-scale field experiment. The results show that the majority of occupants tend to apply not night ventilation but daytime ventilation in Malaysian residential areas. It can be seen from the field experiment that night ventilation would provide better thermal comfort for occupants in Malaysian terraced houses compared with the other ventilation strategies in terms of operative temperature. However, when the evaporative heat loss of occupants is taken into account by using SET*, the night ventilation would not be the superior technique to the others in providing daytime thermal comfort mainly due to the high humidity conditions. Therefore, the indoor humidity control during the daytime such as by dehumidification would be needed when the night ventilation technique is applied to Malaysian terraced houses. Otherwise, full-day ventilation would be a better option compared with night ventilation. 相似文献
19.
This study reports on a numerical investigation of transport behavior of indoor airflow and size-dependent particulate matter (PM) in multi-room buildings. An indoor size-dependent PM transport approach, combining the Eulerian large-eddy simulation of turbulent flow with the Lagrangian particle trajectory tracking, was developed to investigate indoor airflow pattern and PM1/PM2.5/PM10 removal efficiency in naturally ventilated multi-room buildings. A displacement ventilation with a measured indoor PM10 profile in Taipei Metropolis as the initial condition was carried out to characterize spatial and temporal variations of indoor PM1/PM2.5/PM10 removal behavior. The effects of indoor airflow pattern on particle transport mechanisms, e.g., deposition, suspension, migration and escape, were analyzed. Two comparison scenarios, which considered the effects of no indoor partition and different air change rate, respectively, were also conducted. In comparison with the effectiveness of PM1/PM2.5/PM10 removal, the simulated results showed that coarse particles were easier to be removed out of the building than fine particles. Natural ventilation was not an effective way to remove fine particles such as PM1 and PM2.5 in a multi-room building. Indoor partitions can impede 12% of the mean streamwise velocities and significantly increase 30-50% turbulence intensities. However, indoor partitions increased particle deposition and decreased particle escape. As a result of the two opposite particle removal mechanisms, i.e., deposition and escape, the impact of indoor partitions on PM1/PM2.5/PM10 removal behavior was not as significant as the results of airflow velocities. PRACTICAL IMPLICATIONS: This work developed a computational fluid dynamics technique to investigate indoor airflow patterns and PM1/PM2.5/PM10 removal ability in ventilated multi-room buildings. The results of this paper can help to identify adequate PM1/PM2.5/PM10 cleaning procedure and provide useful size-dependent PM control strategy in multi-room buildings. 相似文献
20.
Exhaust cowls are used in conjunction with hybrid ventilation systems to efficiently convert wind energy into negative pressure and thus minimize the electrical energy required by the extract fan. Yet the fact that cowl performance is largely dictated by operating conditions imposes particularly stringent demands on modelling. This paper demonstrates, by way of a concrete example, the need for and potential benefits of a new methodological approach to the modelling of cowls. The study focuses on a specific modelling strategy, applied within a building simulation program, for a cowl used in a hybrid ventilation system. The method is progressively simplified to produce four variants, which chiefly vary according to their level of detail and, hence, the associated modelling effort. Wind pressure coefficients at facade, above roof and in the cowl are needed for all model variants. Some of the investigated variants rely on CFD computations of airflow around the building to determine these values. This study uses the example of a single-family house (SFH) to identify those criteria requiring particular attention in the performance of CFD numerical flow analyses. All four variants are examined on the basis of this example to determine which simplifications to the model are appropriate and permissible without unduly compromising the accuracy of the results. 相似文献