首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
With the actual environmental issues of energy savings in buildings, there are more efforts to prevent any increase in energy use associated with installing air-conditioning systems. The actual standard of thermal comfort in buildings ISO 7730 is based on static model that is acceptable in air-conditioned buildings, but unreliable for the case of naturally ventilated buildings. The different field studies have shown that occupants of naturally ventilated buildings accept and prefer a significantly wider range of temperatures compared to occupants of air-conditioned buildings. The results of these field studies have contributed to develop the adaptive approach. Adaptive comfort algorithms have been integrated in EN15251 and ASHRAE standards to take into account the adaptive approach in naturally ventilated buildings. These adaptive algorithms seem to be more efficient for naturally ventilated buildings, but need to be assessed in field studies. This paper evaluates different algorithms from both static and adaptive approach in naturally ventilated buildings across a field survey that has been conducted in France in five naturally ventilated office buildings. The paper presents the methodology guidelines, and the thermal comfort algorithms considered. The results of application of different algorithms are provided with a comparative analysis to assess the applied algorithms.  相似文献   

2.
This field study was conducted during summer 2009 in Harbin, northeast of China in order to investigate human responses to the thermal conditions in naturally ventilated residential buildings in cold climate. We visited 257 families in six residential communities and collected 423 sets of physical data and subjective questionnaires. The neutral temperature is 23.7 °C, with the clothing insulation of 0.54 clo. The neutral temperature in Harbin is lower than neutral temperatures in warm climates by others, which is in accordance with the thermal adaptive model. 80% of the occupants can accept the air temperature range of 21.5-31.0 °C, which is wider than the summer comfort temperature limits by the adaptive model. The preferred temperature range fell between 24.0 °C and 28.0 °C. About 57.9% of the subjects voted “no change” with the humid range of 40% and 70%. 61.5% of the occupants voted “no change” with the air velocity within the range of 0.05-0.30 m/s. In summer, occupants preferred air velocity of lower than 0.25 m/s even at higher indoor temperature, which is different from the other field studies. The Harbin occupants in naturally ventilated dwellings can achieve thermal comfort by operable windows instead of running air-conditioners.  相似文献   

3.
Parametric studies of facade designs for naturally ventilated residential buildings in Singapore were carried out to optimize facade designs for better indoor thermal comfort and energy saving. Two criteria regarding indoor thermal comfort for naturally ventilated residential buildings are used in this study. To avoid the perception of thermal asymmetry, temperature difference between mean radiant temperature and indoor ambient air temperature should be less than 2 °C [F.A. Chrenko, Heated ceilings and comfort. J. Inst. Heat. Ventilating Eng. 20 (1953) 375–396; F.A. Chrenko, Heated ceilings and comfort. J. Inst. Heat. Ventilating Eng. 21 (1953) 145–154]. Thermal comfort regression model for naturally ventilated residential buildings in Singapore was used to evaluate various facade designs either. Facade design parameters: U-values, orientations, WWR (window to wall ratio) and shading device lengths are considered in the investigation. The building simulation results for a typical residential building in Singapore indicated that the U-value of facade materials for north and south orientations should be less than 2.5 W/m2 K and the U-value of facade materials for north and south orientations should be less than 2 W/m2 K. From the coupled simulation results, it was found that the optimum window to wall ratio is equal to 0.24. Optimum facade designs and thermal comfort indexes are summarized for naturally ventilated residential buildings in Singapore.  相似文献   

4.
An active facade is often used to promote the flow of air through a building, however in order to ensure that this process is effective the facade should face a southerly orientation. This means that not only solar energy is transferred across the glazing but in sunny periods shading is needed to prevent excess brightness levels occurring on the working areas where it may result in the luminance distributions not complying with current lighting requirements. The building investigated is located in Sheffield, England and is one of the University of Sheffield's recently built green buildings. It has a high thermal mass which is used to promote the use of night cooling. This paper reports the initial findings of an internal assessment of the thermal comfort and daylighting conditions in such a building. The results have indicated that such designs are to be commended for their passive use of solar energy and can provide a high quality working environment.  相似文献   

5.
The distinctions between natural ventilation and mechanical ventilation system are explained. With the testing result of natural ventilation system of an office building in Shanghai, the irrationality of using energy-utilization coefficient to evaluate one natural ventilation system is discussed. Based on thermal comfort of natural ventilation environment, an evaluation method is then established and used to evaluate the testing result.  相似文献   

6.
Daechung, a semi-open space with wooden floor located between the front and backyards of traditional Korean residences, is well known as a cool space in summer due to cross-ventilation, but it has not yet been scientifically explained thoroughly. The purpose of this paper is to characterize the wind flow measured at a Daechung to interpret the effects of the wind characteristics on thermal comfort. We measured 10-Hz turbulence data at the Daechung and partitioned the wind vector into two directions (i.e. backyard to Daechung and front yard to Daechung). Interestingly, the wind from the cool backyard flowing through the Daechung was of less frequency and shorter duration but had higher velocity compared to wind from the opposite direction, which can provide thermal comfort to the dwellers. We suggest that the wind characteristics were determined by various aspects of the house's design, such as its location and the degree of enclosure in front and backyards. The results show that traditional Korean house made use of a natural ventilation system during the summer. The principles of this system could be helpful in constructing environmentally friendly and sustainable residences.  相似文献   

7.
通风降温建筑室内热环境模拟及热舒适研究   总被引:15,自引:0,他引:15  
将热舒适评价标准PMV/PPD模型与建筑动态热模拟及计算流体动力学(CFD)模拟相结合,分别对重庆地区自然通风房间和埋管送风通风房间进行了室内气候及热舒适性模拟与分析,结果表明,埋管系统通风降温可以改善炎热地区的室内热舒适性。  相似文献   

8.
The coupling strategies for natural ventilation between building simulation (BS) and computational fluid dynamics (CFD) are discussed and coupling methodology for natural ventilation is highlighted. Two single-zone cases have been used to validate coupled simulations with full CFD simulations. The main discrepancy factors have also been analyzed. The comparison results suggest that for coupled simulations taking pressure from BS as inlet boundary conditions can provide more accurate results for indoor CFD simulation than taking velocity from BS as boundary conditions. The validation results indicate that coupled simulations can improve indoor thermal environment prediction for natural ventilation taking wind as the major force. With the aids of developed coupling program, coupled simulations between BS and CFD can effectively improve the speed and accuracy in predicting indoor thermal environment for natural ventilation studies.  相似文献   

9.
Theatres are the most complex of all auditorium structures environmentally. They usually have high heat loads, which are of a transient nature as audiences come and go, and from lighting which changes from scene to scene, and they generally have full or nearly full occupancy. Theatres also need to perform well acoustically, both for the spoken word and for music, and as sound amplification is less used than in other auditoria, background noise control is critically important. All these factors place constraints on the ventilation design, and if this is poor, it can lead to the deterioration of indoor air quality and thermal comfort. To analyse the level of indoor air quality and thermal comfort in a typical medium-sized mechanically ventilated theatre, and to identify where improvements could typically be made, a comprehensive post-occupancy evaluation study was carried out on a theatre in Belgrade. The evaluation, based on the results of monitoring (temperature, relative humidity, CO2, air speed and heat flux) and modelling (CFD), as well as the assessment of comfort and health as perceived by occupants, has shown that for most of the monitored period the environmental parameters were within the standard limits of thermal comfort and IAQ. However, two important issues were identified, which should be borne in mind by theatre designers in the future. First, the calculated ventilation rates showed that the theatre was over-ventilated, which will have serious consequences for its energy consumption, and secondly, the displacement ventilation arrangement employed led to higher than expected complaints of cold discomfort, probably due to cold draughts around the occupants’ feet.  相似文献   

10.
The impacts of various ventilation strategies and facade designs on indoor thermal environment for naturally ventilated residential buildings in Singapore are investigated in this study based on thermal comfort index. Four ventilation strategies, nighttime-only ventilation, daytime-only ventilation, full-day ventilation and no ventilation were evaluated for hot-humid climate according to the number of thermal discomfort hours in the whole typical year on the basis of a series of TAS simulations. Parametric studies of facade designs on orientations, window to wall ratios and shading devices were performed for two typical weeks by coupled simulations between building simulation ESP-r and CFD (FLUENT). The results indicate that full-day ventilation for indoor thermal comfort is better than the other three ventilation strategies. With various facade design studies, it was found that north- and south-facing facades can provide much comfortable indoor environment than east- and west-facing facades in Singapore. It is recommended that optimum window to wall ratio 0.24 can improve indoor thermal comfort for full-day ventilation and 600 mm horizontal shading devices are needed for each orientation in order to improve thermal comfort in further.  相似文献   

11.
In earlier work [1], NIST developed a climate suitability analysis method to evaluate the potential of a given location for direct ventilative cooling and nighttime ventilative cooling. The direct ventilative cooling may be provided by either a natural ventilation system or a fan-powered economizer system. The climate suitability analysis is based on a general single-zone thermal model of a building configured to make optimal use of direct and/or nighttime ventilative cooling. This paper describes a new tool implementing this climate suitability methodology and its capability to consider an adaptive thermal comfort option and presents results from its application to analyze a variety of U.S. climates. The adaptive thermal comfort option has the potential to substantially increase the effectiveness of natural ventilation cooling for many U.S. cities. However, this impact is very dependent on the acceptable humidity range. If a dewpoint limit is used, the increase is significant for a dry climate such as Phoenix but much smaller for humid climates such as Miami. While ASHRAE Standard 55 does not impose a limit on humidity when using the adaptive thermal comfort option, the necessity of limiting humidity for other reasons needs to be considered.  相似文献   

12.
This study investigates the effectiveness of night ventilation technique for residential buildings in hot-humid climate of Malaysia. This paper firstly presents the results of a survey on usage patterns of windows and air-conditioners in typical Malaysian residential areas. Secondly, the effects of different natural ventilation strategies on indoor thermal environment for Malaysian terraced houses are evaluated based on the results of a full-scale field experiment. The results show that the majority of occupants tend to apply not night ventilation but daytime ventilation in Malaysian residential areas. It can be seen from the field experiment that night ventilation would provide better thermal comfort for occupants in Malaysian terraced houses compared with the other ventilation strategies in terms of operative temperature. However, when the evaporative heat loss of occupants is taken into account by using SET*, the night ventilation would not be the superior technique to the others in providing daytime thermal comfort mainly due to the high humidity conditions. Therefore, the indoor humidity control during the daytime such as by dehumidification would be needed when the night ventilation technique is applied to Malaysian terraced houses. Otherwise, full-day ventilation would be a better option compared with night ventilation.  相似文献   

13.
Chang TJ  Hsieh YF  Kao HM 《Indoor air》2006,16(2):136-152
This study reports on a numerical investigation of transport behavior of indoor airflow and size-dependent particulate matter (PM) in multi-room buildings. An indoor size-dependent PM transport approach, combining the Eulerian large-eddy simulation of turbulent flow with the Lagrangian particle trajectory tracking, was developed to investigate indoor airflow pattern and PM1/PM2.5/PM10 removal efficiency in naturally ventilated multi-room buildings. A displacement ventilation with a measured indoor PM10 profile in Taipei Metropolis as the initial condition was carried out to characterize spatial and temporal variations of indoor PM1/PM2.5/PM10 removal behavior. The effects of indoor airflow pattern on particle transport mechanisms, e.g., deposition, suspension, migration and escape, were analyzed. Two comparison scenarios, which considered the effects of no indoor partition and different air change rate, respectively, were also conducted. In comparison with the effectiveness of PM1/PM2.5/PM10 removal, the simulated results showed that coarse particles were easier to be removed out of the building than fine particles. Natural ventilation was not an effective way to remove fine particles such as PM1 and PM2.5 in a multi-room building. Indoor partitions can impede 12% of the mean streamwise velocities and significantly increase 30-50% turbulence intensities. However, indoor partitions increased particle deposition and decreased particle escape. As a result of the two opposite particle removal mechanisms, i.e., deposition and escape, the impact of indoor partitions on PM1/PM2.5/PM10 removal behavior was not as significant as the results of airflow velocities. PRACTICAL IMPLICATIONS: This work developed a computational fluid dynamics technique to investigate indoor airflow patterns and PM1/PM2.5/PM10 removal ability in ventilated multi-room buildings. The results of this paper can help to identify adequate PM1/PM2.5/PM10 cleaning procedure and provide useful size-dependent PM control strategy in multi-room buildings.  相似文献   

14.
Exhaust cowls are used in conjunction with hybrid ventilation systems to efficiently convert wind energy into negative pressure and thus minimize the electrical energy required by the extract fan. Yet the fact that cowl performance is largely dictated by operating conditions imposes particularly stringent demands on modelling. This paper demonstrates, by way of a concrete example, the need for and potential benefits of a new methodological approach to the modelling of cowls. The study focuses on a specific modelling strategy, applied within a building simulation program, for a cowl used in a hybrid ventilation system. The method is progressively simplified to produce four variants, which chiefly vary according to their level of detail and, hence, the associated modelling effort. Wind pressure coefficients at facade, above roof and in the cowl are needed for all model variants. Some of the investigated variants rely on CFD computations of airflow around the building to determine these values. This study uses the example of a single-family house (SFH) to identify those criteria requiring particular attention in the performance of CFD numerical flow analyses. All four variants are examined on the basis of this example to determine which simplifications to the model are appropriate and permissible without unduly compromising the accuracy of the results.  相似文献   

15.
The characteristics of thermal comfort and indoor air quality (IAQ) in bedrooms, occupants’ perceptions and their impact on sleep quality are not often studied. It becomes even more interesting if climatic conditions allow Naturally/Mechanically Ventilated (NMV) concepts as opposed to Air-conditioning (AC) and this becomes very significant from an energy perspective. This paper reports our findings from such a study conducted in a hot and humid climate. Objective measurements of thermal comfort and IAQ were carried out during sleeping period in 12 NMV and 12 AC bedrooms over a period of 2 months. Questionnaire responses were sought from each subject at the end of the objective measurements to assess their perceptions on thermal comfort and indoor air quality of the bedrooms during sleep and their sleeping conditions. Although the “Historical” and “Immediate” responses for the NMV and AC bedrooms indicate that there was a good level of acceptability for both Thermal Comfort and Perceived Air Quality (PAQ), it was found that NMV bedroom was a better sleeping environment. The subjects’ immediate perception of PAQ and thermal comfort were reasonably correlated with their historical perceptions. The subjects’ perception of PAQ was fairly closely correlated to their perception of Thermal Comfort. There was a considerable increase in the carbon dioxide level in an AC bedroom relative to a NMV bedroom. However, there was no clear evidence to substantiate that sleeping duration decreased with increasing level of carbon dioxide, but the findings do suggest that high level of carbon dioxide may hinder the duration of sleep.  相似文献   

16.
This study targets environmental load reduction in hot and humid regions. It reveals the effects that porous residential buildings have on the natural ventilation performance and, consequently, the cooling load reduction. Two residential building models, namely a model with a void ratio of 0% and a model with a void ratio of 50%, are evaluated using computational fluid dynamics (CFD) analysis and thermal and airflow network analysis. The analysis on components of the heat load indicates that improvements in the natural ventilation performance would significantly reduce the cooling load.  相似文献   

17.
18.
Based on the Response Surface Methodology (RSM), the development of first- and second-order models for predicting the Air Diffusion Performance Index (ADPI) in a displacement-ventilated office is presented. By adopting the technique of Computational Fluid Dynamics (CFD), the new ADPI models developed are used to investigate the effect of simultaneous variation of three design variables in a displacement ventilation case, i.e. location of the displacement diffuser (Ldd), supply temperature (T) and exhaust position (Lex) on the comfort parameter ADPI. The RSM analyses are carried out with the aid of a statistical software package MINITAB. In the current study, the separate effect of individual design variable as well as the second-order interactions between these variables, are investigated. Based on the variance analyses of both the first- and second-order RSM models, the most influential design variable is the supply temperature. In addition, it is found that the interactions of supply temperature with other design variables are insignificant, as deduced from the second-order RSM model. The optimised ADPI value is subsequently obtained from the model equations.  相似文献   

19.
There are few studies on the microclimate and human comfort of urban areas in hot dry climates. This study investigates the influence of urban geometry on outdoor thermal comfort by comparing an extremely deep and a shallow street canyon in Fez, Morocco. Continuous measurements during the hot summer and cool winter seasons show that, by day, the deep canyon was considerably cooler than the shallow one. In summer, the maximum difference was on average 6 K and as great as 10 K during the hottest days. Assessment of thermal comfort using the PET index suggests that, in summer, the deep canyon is fairly comfortable whereas the shallow is extremely uncomfortable. However, during winter, the shallow canyon is the more comfortable as solar access is possible. The results indicate that, in hot dry climates a compact urban design with very deep canyons is preferable. However, if there is a cold season as in Fez, the urban design should include some wider streets or open spaces or both to provide solar access.  相似文献   

20.
Design guidelines for natural ventilation (NV) in buildings focus on the potential hourly air change (ACH) rates based on the building space parameters. Critically, external airflow data is often assumed on the basis of a single mean wind speed and an associated prevailing wind direction. This can result in significant variation in ventilation rates and comfort conditions when non-design external wind conditions prevail. This paper describes a CFD study aimed at examining the influence of variations in external wind speed and direction on the air change rate for the atrium space of a two-storey naturally ventilated building. The building atrium is ventilated by a series of entry vents on one wall of the building in conjunction with roof vents. External wind speeds from 25 to 250% of the mean site wind speed (5.7 m/s) were examined and found to result in an almost linear increase in the ACH rate. For a single wind speed, the relationship between wind direction and the ACH rate was also found to be approximately linear for wind directions between 0° and 90° (orthogonal and parallel) to the wall vent openings, but non-linear for other wind directions (90–135°). More generally, the significant variation in the atrium ACH rate with changes in external wind conditions, evident in this particular building model, illustrates the importance of considering non-design wind conditions when designing NV buildings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号