首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
It is difficult for a total air-conditioning system to satisfy the thermal comfort of all workers in an office. Therefore, an individually controlled system that can create a comfortable thermal environment for each worker is needed. In the present study, two chairs incorporating two fans each, one under the seat and one behind the backrest, were developed to provide isothermal forced airflow to the chair occupant. The chairs differed in the size of the fans. Experiments were conducted in a climate chamber during the summer. Seven subjects, who were healthy male college students, were allowed to freely control the two built-in fans by adjusting dials on the accompanying desk. The room air temperatures were set at 26 °C, 28 °C, 30 °C and 32 °C. The following findings were obtained. At a room air temperature of 28 °C, the whole-body thermal sensations were almost thermally neutral, regardless of the type of chair. At a room air temperature of 30 °C, the occupants were able to create acceptable thermal environments from the viewpoints of whole-body thermal sensation and comfort by using the chairs with fans. Their local discomfort rates at the back and lower back, which were affected by the isothermal airflows, were greatly improved at this room air temperature. However, at a room air temperature of 32 °C, the chairs tested in the present study were not able to provide acceptable thermal environments. In order to provide a more comfortable environment to the chair occupants, additional local systems to cool the head, arms, and hands are needed.  相似文献   

2.
In applying radiant floor cooling, its control system must prevent the floor surface condensation in hot and humid weather conditions. With no additional dehumidification system, only the radiant floor cooling system prevents floor condensation. In this case, the effects of the control of the cooling system on the indoor conditions can be changed because of the thermal inertia of the systems. Also different types of control system can be composed according to the control methods, which can affect the construction cost in the design stage. Therefore, the control methods for the radiant cooling system with respect to floor surface condensation must be studied. Furthermore, because Korean people's lifestyle involves sitting on the floor, it is necessary to evaluate if a floor cooling system will influence the thermal comfort of the occupants. This study intends to clarify the control methods of the radiant floor cooling system and to analyze the control performance and applicability of each control method with regard to the floor surface condensation and comfort by computer simulations and experiments on the control methods of the radiant floor cooling system. The results of computer simulations and experiments show that water temperature control is better than water flow control with respect to temperature fluctuations in controlling room air temperature. To prevent floor surface condensation, the supply water temperature could be manipulated according to the dew point temperature in the most humid room, and in individual rooms, the water flow rate (on/off control) can be controlled. Also, the results of radiant cooling experiments show that the floor surface temperature remained above 21 °C, the temperature difference among surfaces remained below 6 °C, and the vertical air temperature difference remained below 1.9 °C, conforming well to comfort standards.  相似文献   

3.
In hot and humid region, air-conditioning is increasingly used to attain thermal comfort. Air-conditioning is highly energy intensive and it is desirable to develop alternative low-energy means to achieve comfort. In a previous experimental investigation using a room equipped with radiant cooling panel, it was found that cooling water kept to 25 °C could be used to attain thermal comfort under some situations, while water at such temperature would not cause condensation of moisture from air on the panel. This paper reports results of a series of whole-year simulations using TRNSYS computer code on applications of radiant cooling to a room model that represents the actual experimental room. Admitting the inability of radiant cooling to accept latent load, chilled water at 10 °C was supplied to cooling coil to precool ventilation air while water cooled by cooling tower was used for radiant cooling in daytime application. For night-time, cooling water from cooling tower supplied for radiant cooling was found to be sufficient to achieve thermal comfort. Such applications are considered to be more amenable to residential houses.  相似文献   

4.
A field assessment of thermal comfort was conducted at Mehran University of Engineering and Technology, situated in the subtropical region of Pakistan. The results show that people of the area were feeling thermally comfortable at effective temperature of 29.85 °C (operative temperature 29.3 °C). A comparison of this neutral effective temperature was made with the neutral effective temperature determined from adaptive models. It is found that the neutral effective temperature determined during this study closely match that of the adaptive model based on either indoor temperature or both indoor and outdoor temperatures. The results of thermal acceptability assessment show that more than 80% of occupants were satisfied at an effective temperature of 32.5 °C, which is 6.5 °C above the upper boundary of ASHRAE thermal comfort zone. Naturally ventilated classrooms and air-conditioned offices of the University were simulated using TRNSYS system simulation program for two cases, once when conventional air-conditioning is used for providing thermal comfort, and when comfort is achieved through radiant cooling. In the simulation, cooling tower was used to regenerate cooling water for the radiant cooling system. Energy consumption was estimated from simulation of both cases. The results show that it is possible to achieve thermal comfort for most of the time of the year through the use of radiant cooling without a risk of condensation of moisture from air on the radiant cooling surfaces. A comparison of the energy consumption estimates show that savings of 80% is possible in case thermal comfort is achieved through radiant cooling instead of conventional air-conditioning.  相似文献   

5.
This paper reports a full-scale experimental campaign and a computational fluid dynamics (CFD) study of a radiant cooling ceiling installed in a test room, under controlled conditions. This research aims to use the results obtained from the two studies to analyze the indoor thermal comfort using the predicted mean vote (PMV). During the whole experimental tests the indoor humidity was kept at a level where the condensation risk was minimized and no condensation was detected on the chilled surface of the ceiling. Detailed experimental measurements on the air temperature distribution, surface temperature and globe temperature were realized for different cases where the cooling ceiling temperature varied from 16.9 to 18.9 °C. The boundary conditions necessary for the CFD study were obtained from the experimental data measurements. The results of the simulations were first validated with the data from the experiments and then the air velocity fields were investigated. It was found that in the ankle/feet zone the air velocity could pass 0.2 m/s but for the rest of the zones it took values less than 0.1 m/s. The obtained experimental results for different chilled ceiling temperatures showed that with a cooling ceiling the vertical temperature gradient is less than 1 °C/m, which corresponds to the standard recommendations. A comparison between globe temperature and the indoor air temperature showed a maximum difference of 0.8 °C being noticed. This paper also presents the radiosity method that was used to calculate the mean radiant temperature for different positions along different axes. The method was based on the calculation of the view factors and on the surface temperatures obtained from the experiments. PMV plots showed that the thermal comfort is achieved and is uniformly distributed within the test room.  相似文献   

6.
Space heating load is decreasing in modern Finnish apartments due to lower U-values of the construction, tight envelopes and heat recovery from exhaust ventilation air. This makes it possible to develop a new combined low temperature water heating system with nominal supply/return water temperatures of 45 °C/35 °C. Such a system includes radiators in rooms and floor heating in bathrooms.In this study, the performance of an apartment building is determined by using dynamic simulation. The simulation results for the combined low temperature water heating system are compared with those for three conventional radiator and floor heating systems. The results show that the combined low temperature water heating system performs well and is able to maintain the zones within the required temperature levels. The thermal comfort analysis indicates that the drifts and ramps in operative temperature using the four studied heating systems are within the limits of Ashrae Standard 55-2004.Temperature measurements in a test room are carried out to find the vertical difference of air temperature using two methods: radiator heating and floor heating. These measurements indicate that there is only a small vertical temperature difference that would not produce any significant thermal discomfort.  相似文献   

7.
Human response to air movement supplied locally towards the face was studied in a room with an air temperature of 20 °C and a relative humidity of 30%. Thirty-two human subjects were exposed to three conditions: calm environment and facially supplied airflow at 21 °C and at 26 °C. The air was supplied with a constant velocity of 0.4 m/s by means of personalized ventilation towards the face of the subjects. The airflow at 21 °C decreased the subjects' thermal sensation and increased draught discomfort, but improved slightly the perceived air quality. Heating of the supplied air by 6 K (temperature increase by 4 K at the target area) above the room air temperature decreased the draught discomfort, improved subjects' thermal comfort and only slightly decreased the perceived air quality. Elevated velocity and temperature of the localized airflow caused an increase of nose dryness intensity and number of eye irritation reports. Results suggest that increasing the temperature of the air locally supplied to the breathing zone by only a few degrees above the room air temperature will improve occupants' thermal comfort and will diminish draught discomfort. This strategy will extend the applicability of personalized ventilation aiming to supply clean air for breathing at the lower end of the temperature range recommended in the standards. Providing individual control is essential in order to avoid discomfort for the most sensitive occupants.  相似文献   

8.
This paper presents a study of local thermal sensation (LTS) and comfort in a field environmental chamber (FEC) served by displacement ventilation (DV) system. The FEC, 11.12 m (L)×7.53 m (W)×2.60 m (H), simulates a typical office layout. A total of 60 tropically acclimatized subjects, 30 male and 30 female, were engaged in sedentary office work for 3 h. Subjects were exposed to three vertical air temperature gradients, nominally 1, 3 and 5 K/m, between 0.1 and 1.1 m heights and three room air temperatures of 20, 23 and 26 °C at 0.6 m height. The objective of this study is to investigate the mutual effect of local and overall thermal sensation (OTS) and comfort in DV environment. The results show that in a space served by DV system, at OTS close to neutral, local thermal discomfort decreased with the increase of room air temperature. The OTS of occupants was mainly affected by LTS at the arm, calf, foot, back and hand. Local thermal discomfort was affected by both LTS and OTS. At overall cold thermal sensation, all body segments prefer slightly warm sensation. At overall slightly warm thermal sensation, all body segments prefer slightly cool sensation.  相似文献   

9.
Thermal environment that causes thermal discomfort may affect office work performance. However, the mechanisms through which occupants are affected are not well understood. This study explores the plausible mechanism linking room air temperature and mental alertness through perceptual and physiological responses in the tropics. Ninety-six young adults participated as voluntary subjects in a series of experiment conducted in the simulated office settings. Three room air temperatures, i.e. 20.0, 23.0 and 26.0 °C were selected as the experimental conditions. Both thermal comfort and thermal sensation changed significantly with time under all exposures (P < 0.0001). Longer exposure at 20.0 °C led to cooling sensations due to lower skin temperatures (P < 0.0001) and was perceived as the least comfortable. Nevertheless, this moderate cold exposure induced nervous system activation as demonstrated by the increase of α-Amylase level (P < 0.0001) and the Tsai–partington test (P < 0.0001). A mechanism linking thermal environment, occupants' responses and performance is proposed.  相似文献   

10.
This paper presents the findings of a field study of occupant thermal comfort and thermal environments with a radiant slab cooling system. The study combined field measurements and questionnaires based on the ASHRAE RP-921 project protocol. A total of 116 sets of data from 82 participants were collected in summer and winter. The results reveal that occupant whole-body thermal sensations with radiant cooling were consistent with the PMV model. The main advantage of radiant cooling for thermal comfort was found to be reduced local thermal discomfort with reduced vertical air temperature difference as well as reduced draft rate. The survey results revealed that 14–22% of participants in the study reported local cold discomfort in the arm–hand and the leg–foot regions. The results indicated that there may be lower limits on air speeds acceptable to occupants. Statistical analysis indicated that occupant thermal votes were free of significant correlation with personal, contextual and psychological factors. Suggestions to improve the questionnaire and the field survey process are offered.  相似文献   

11.
A room using carbon black mortar slabs (CBMS) as the electrical floor heating element has been built in our lab. Studies showed that an electrical power of about 123.8 W/m2 resulted in the indoor temperature rise of 10 °C within 330 min. Temperature distribution along the height of the room was uniform. Temperature rise was slightly higher if floor tiles rather than the wood flooring was used. In the process of heating, self-heating of CBMS has consumed more than 30% of the generated heat by Joule effect, which was advantageous for the stability of the thermal state. The indoor air absorbed over 50% of the generated heat. Results derived from repeated tests show that the electrical power of the CBMS system was stable during several cycles of heating. Further, the procedure and power consumption for the system to maintain a certain indoor temperature were studied. Continuous tests for 72 h has shown that the higher the indoor controlled temperature was, the longer the working time and the shorter the rest time in every cycle of heating were required. Accordingly, the power consumption to maintain the heat state increased with the controlled temperature increasing.  相似文献   

12.
This field study was conducted during summer 2009 in Harbin, northeast of China in order to investigate human responses to the thermal conditions in naturally ventilated residential buildings in cold climate. We visited 257 families in six residential communities and collected 423 sets of physical data and subjective questionnaires. The neutral temperature is 23.7 °C, with the clothing insulation of 0.54 clo. The neutral temperature in Harbin is lower than neutral temperatures in warm climates by others, which is in accordance with the thermal adaptive model. 80% of the occupants can accept the air temperature range of 21.5-31.0 °C, which is wider than the summer comfort temperature limits by the adaptive model. The preferred temperature range fell between 24.0 °C and 28.0 °C. About 57.9% of the subjects voted “no change” with the humid range of 40% and 70%. 61.5% of the occupants voted “no change” with the air velocity within the range of 0.05-0.30 m/s. In summer, occupants preferred air velocity of lower than 0.25 m/s even at higher indoor temperature, which is different from the other field studies. The Harbin occupants in naturally ventilated dwellings can achieve thermal comfort by operable windows instead of running air-conditioners.  相似文献   

13.
The thermal performance of two passive cooling systems under hot and humid climate condition is experimentally investigated. The experimental results were obtained from a test cell and a controlled cell with identical walls but different roof configurations. The passive cooling systems applied to the test cell are solar chimney and water spraying on roof. The experimental results obtained from the test cell are compared with the closed and no passive cooling controlled cell. In addition, the significant of solar-induced ventilation by using a solar chimney is realized by utilizing a wind shield to reduce the effect of wind-induced ventilation resulting in low measured air velocities to the solar chimney and low computed value of coefficient of discharge. The derived coefficient of discharge of 0.4 is used to compute Air Changes rates per Hour (ACH). The ACHs with application of solar chimney solely are found to be in the range of 0.16–1.98. The studies of air temperature differences between the room and the solar chimney suggest amount of air flow rates for different periods in a year. The derived relationships show that the air flow rate during February–March is higher than during June–October by 16.7–53.7%. The experimental results show that application of the solar chimney in the test cell could maintain the room temperature at 31.0–36.5 °C, accounting for 1.0–3.5 °C lower than the ambient air and 1.0–1.3 °C lower than the controlled cell. However, to make the test cell's room temperature much lower than the ambient temperature and increase the flow rate of air due to the buoyancy, the application of water spraying on roof is recommended together with solar chimney. The application of the two systems in the hot and humid climate are discovered to sustain the room temperature of the test cell to be lower than the ambient air by 2.0–6.2 °C and lower than the controlled cell by 1.4–3.0 °C.  相似文献   

14.
A model for displacement ventilation system based on plume rise of single point heat source was developed. The errors for temperature gradient ratio were less than 6% in most cases. Errors for temperature gradient and displacement zone height were relatively higher (up to 28.1%) which might be due to the derivation of the parameters from experimental data. Still, the errors were lower than those from design model/method of some other workers (68.5% for the temperature gradient ratio and 15.7% for the temperature difference between the supply air and at 0.1 m above floor level). With a room height of 2.4 m (common for office in Hong Kong) and design room temperature 25.5 °C defined at 1.1 m above floor level under the normal load to air flow ratio of 12,000 W/m3/s (typical values for sub-tropical region) and minimum supply temperature of 18 °C, there existed a zone capacity range from 1000 to 5000 W that stand alone operation displacement ventilation system was feasible and that the displacement zone height (minimum 2.2 m) was above normal breathing level. The feasible zone capacity range diminished with decrease in design room temperature and/or room height. In this case, the load to air flow ratio had to be reduced, resulting in a higher flow rate when compared to a mixing ventilation system, or an auxiliary cooling facility such as a chilled ceiling had to be used.  相似文献   

15.
Few field studies of energy performance of radiant cooling systems have been undertaken. A recently constructed 17,500 m2 building with a multi-floor radiant slab cooling system in the tower was investigated through simulation calibrated with measured building energy use and meteorological data. For the very cold, dry region where the building was located, it was found that a typical floor of the tower would have had 30% lower annual energy use with a conventional variable air volume system than with the as-built radiant cooling-variable air volume combination. This was due to (1) simultaneous heating and cooling by the existing radiant cooling and air systems, (2) the large amount of free cooling possible in this climate, and (3) suboptimal control settings. If these issues were remedied and combined with improved envelope and a dedicated outdoor air system with exhaust air heat recovery, a typical floor could achieve annual energy use 80% lower than a typical floor of the existing building HVAC system. This shows that radiant thermal control can make a significant contribution to energy-efficiency, but only if the building design and operating practices complement the strengths of the radiant system.  相似文献   

16.
At room temperatures ranging from 28 to 35 °C, the three sensitive body parts face, chest and back were exposed to local cooling airflow, whose temperatures ranged from 22 to 28 °C. Dressed in shorts, 30 randomly selected male subjects were exposed to each condition for 30 min and reported their local thermal sensations of all body parts, overall thermal sensation and thermal acceptability on voting scales at regular intervals. It was shown that local exposure affected local thermal sensations of the unexposed body parts significantly, based on which a new influencing factor method was proposed. Influencing factor and weighting factor for each body part are unaffected by room or cooling air temperatures under steady state and the predictive model of overall thermal sensation was obtained using influencing and weighting factors. Taking the maximum thermal sensation difference between body parts to represent non-uniformity of thermal sensation, a new assessment model for non-uniform thermal environment was proposed. The model shows that the upper boundary of the acceptable room temperature range can be shifted from 26 to 30.5 °C while face cooling is provided.  相似文献   

17.
In the ASHRAE comfort database [1], underpinning the North American naturally ventilated adaptive comfort standard [2], the mean indoor air velocity associated with 90% thermal acceptability was relatively low, rarely exceeding 0.3 m/s. Post hoc studies of this database showed that the main complaint related to air movement was a preference for ‘more air movement’ 3 and 4. These observations suggest the potential to shift thermal acceptability to even higher operative temperature values, if higher air speeds are available. If that were the case, would it be reasonable to expect temperature and air movement acceptability levels at 90%? This paper focuses on this question and combines thermal and air movement acceptability percentages in order to assess occupants. Two field experiments took place in naturally ventilated buildings located on Brazil’s North-East. The fundamental feature of this research design is the proximity of the indoor climate observations with corresponding comfort questionnaire responses from the occupants. Almost 90% thermal acceptability was found within the predictions of the ASHRAE adaptive comfort standard and yet occupants required ‘more air velocity’. Minimum air velocity values were found in order to achieve 90% of thermal and air movement acceptability. From 24 to 27 °C the minimum air velocity for thermal and air movement acceptability is 0.4 m/s; from 27 to 29 °C is 0.41–0.8 m/s, and from 29 to 31 °C is >0.81 m/s. These results highlight the necessity of combining thermal and air movement acceptability in order to assess occupants’ perception of their indoor thermal environment in hot humid climates.  相似文献   

18.
Design guidelines envisage that floor heating can be used together with displacement ventilation (DV), provided that the supply air is not overly heated before it can reach heat and contaminant sources. If this is not controlled a mixing flow pattern could occur in the room. The use of floor cooling with DV is also considered possible, although draught risk at ankle level and vertical air temperature differences must be controlled carefully, because they could increase.Few studies on these topics were found in the literature.An indoor environmental chamber was set up to obtain measurements aimed at analysing the possibilities and limitations of combining floor heating/cooling with DV. Air temperature profiles, air velocity profiles, surface temperatures and ventilation effectiveness were measured under different environmental conditions that may occur in practice. These values were compared to equivalent temperature measurements obtained using a thermal manikin.The measurements show that floor heating can be used with DV, obtaining high ventilation effectiveness values. A correlation between the floor heating capacity and the air temperature profile in the room was found. Measurements showed that floor cooling does not increase draught risk at ankle level, although it does increase vertical air temperature differences.  相似文献   

19.
A transient analytical model is presented to study the effectiveness of an even shape greenhouse used for heating the aquaculture pond during extreme winters. The model was solved for the climatic conditions of Delhi (Latitude: 28°35′N), representing the northern India (comprising the states of Haryana, Punjab, Uttarakhand and Himachal Padesh) for the typical day (20th January) of winter. A simple trapezoidal design of aquaculture pond is proposed. Parametric studies involved the effects of length, breadth, depth, inclination of lining of fishpond, depth of water and air change in the greenhouse on the water heating in the fishpond. The performance of fishpond was assessed in terms of temperature gain, mean thermal efficiency and thermal load leveling. The optimum parameters for fishpond were 30 m length, 16 m breadth, 1.25 m depth, 1.0 m water depth, 75° lining inclination, and 8 air changes per hour for maximum temperature gain, maximum thermal efficiency and minimum thermal load leveling. A 20 °C rise in water temperature could be achieved during the day and 11 °C in the month of January. The maximum heat gain and loss are at around 16:00 and 7:00 h of the days, respectively.  相似文献   

20.
张亚立  王佳 《暖通空调》2007,37(6):24-26
介绍了空调冷热源及系统的设计特点和控制方法,详细阐述了土壤换热器的结构及设计形式。采用地板辐射供冷供热结合新风置换通风的方案,重点考虑了围护结构的热工性能、楼板蓄热效应以及防结露措施。采用带室温反馈的室外温度控制方式(前馈-反馈控制)解决了地板辐射供冷系统调节反应速度延迟问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号