首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To improve indoor air quality and to protect public health, Taiwan has enacted the “Indoor Air Quality Act (IAQ Act)” in 2012. For the general public, the indoor air quality in hair salons is important because it is a popular location that people will often visit for hair treatments. However, only a few exposure assessments regarding air pollutants have previously been performed in hair salons. To assess the air quality of hairdressing environments in Taipei, ten hairdressing salons were included for a walk‐through survey in this study. In addition, the airborne concentrations of formaldehyde, volatile organic compounds (VOCs), CO2, and phthalate esters were also determined in 5 salons. Charcoal, XAD‐2, and OVS‐Tenax tubes were used for the air sampling, while the samples were analyzed with gas chromatography/mass spectrometer. It was found that the products used in hair salons contained various chemicals. In fact, from the walk‐through survey, a total of 387 different ingredients were found on 129 hair product labels. The hair salons were not well ventilated, with CO2 levels of 600 to 3576 ppm. The formaldehyde concentrations determined in this study ranged from 12.40 to 1.04 × 103 μg m?3, and the maximum level was above the permissible exposure limit (PEL) of US Occupational Safety and Health Administration (US OSHA). Additionally, 83% of the samples were with levels higher than the standard regulated by Taiwan's IAQ Act. The concentrations of VOCs and phthalate esters were below the occupational exposure limits (OELs), but higher than what was found in general residential environments. The hair products were considered as the major source of air pollutants because significantly higher concentrations were found around the working areas. The number of perming treatments, the number of workers, and the frequency of using formaldehyde releasing products, were found to be associated with the levels of formaldehyde. This study indicates that efforts are needed to improve the indoor air quality in hairdressing salons in Taipei.  相似文献   

2.
We performed the experimental and the numerical studies on thermal comfort (TC) and indoor air quality (IAQ) in the lecture room with cooling loads when the operating conditions are changed. Predicted mean vote (PMV) value and CO2 concentration of the lecture room were measured and compared to the numerical results. Both of them showed a reasonable agreement with each other and then we applied the numerical model to analyze TC and IAQ for a couple of different operating conditions. From the results we found that the increment of the discharge angle of 4-way cassette air-conditioner makes uniformity of TC worse, but rarely affects IAQ. It turned out that TC and IAQ are hardly affected by the variation of the discharge airflow. Finally TC was merely affected by the increment of the ventilation rate, but when the ventilation rate is more than 800 m3/h, the average CO2 concentration can be satisfied with the standard limits of Japanese in our case studies.  相似文献   

3.
Although significant progress has been made in understanding the sources and chemistry of indoor volatile organic compounds (VOCs) during the past decades, much is unknown about the role of humans in indoor air chemistry. In the spring of 2014, we conducted continuous measurements of VOCs using a proton transfer reaction mass spectrometer (PTR‐MS) in a university classroom. Positive matrix factorization (PMF) of the measured VOCs revealed a ‘human influence’ component, which likely represented VOCs produced from human breath and ozonolysis of human skin lipids. The concentration of the human influence component increased with the number of occupants and decreased with ventilation rate in a similar way to CO2, with an average contribution of 40% to the measured daytime VOC concentration. In addition, the human skin lipid ozonolysis products were observed to correlate with CO2 and anticorrelate with O3, suggesting that reactions on human surfaces may be important sources of indoor VOCs and sinks for indoor O3. Our study suggests that humans can substantially affect VOC composition and oxidative capacity in indoor environments.  相似文献   

4.
在室内空气品质评价指标QPD和IAQ感知值的基础上,提出广义IAQ感知值GPV的概念,井给出了数学模型。分析表明,指标C可以被看作为GPV的一个特例,当某些不能为人体所感知的因素必须被考虑时,应采用GPV指标。  相似文献   

5.
Recently, airtight envelope system has become popular in the design of office buildings to reduce heating and cooling loads. Maintaining allowable indoor air quality (IAQ) for such airtight buildings totally depends on mechanical ventilation systems. Subsequently, poor operation of the ventilation system in such office buildings causes ineffective removal of polluted indoor air, and displays a sign of “sick building syndrome” (SBS). User's perception is an important parameter for evaluating IAQ. A questionnaire study was carried out to investigate the prevalence of the SBS at a multistory centrally air-conditioned Airport Authority of India (AAI) building in the New Delhi city. Quantification of the perceptions of the users regarding IAQ was done by converting their responses to a SBS score. The quantified answers were then subjected to statistical analysis. Qualitative analysis of the questionnaire was carried out to evaluate relationships between SBS score and carbon dioxide (CO2) and other parameters related to building and work environment. Quantitative analysis of IAQ was also conducted by monitoring indoor concentrations of four pollutants, namely, nitrogen dioxide (NO2), sulphur dioxide (SO2), suspended particulate matter (SPM) and carbon monoxide (CO). Concentrations of pollutants were complying with IAQ standards as given by ASHRAE and WHO. The SBS was higher on the third floor as compared to other floors and the control tower. The main symptoms prevailing were headache (51%), lethargy (50%), and dryness in body mucous (33%). The third floor and the control tower were affected by infiltration, mainly from entrance doors. A direct relation between the average SBS score and CO2 concentration was found, i.e., the average SBS score increased with CO2 concentration and vice versa, clearly signifying the usefulness of SBS score in IAQ.  相似文献   

6.
Indoor air quality (IAQ) on ships is important for the passengers’ comfort and the crew’s work efficiency, despite ships not being as common as vehicles and airplanes. The builders and operators need to be aware of the importance and present status of IAQ, but sufficient data and information are not available. In this study, we measured the pollutant concentrations on two different kinds of newly launched ships: a passenger ship and a chemical cargo ship. Although higher than in the passenger ship, the concentrations of most volatile organic compounds (VOCs) and formaldehyde in the cargo ship were lower than the recommended standards and acceptable with a few exceptions. The high CO and CO2 concentrations in the kitchen, engine room, and engine control room were generally attributed to combustion sources. Overall, the IAQ of the cargo ship was worse than that of the passenger ship, and the concentrations of some pollutants surpassed the international criteria. For the passenger ship, the variation of IAQ was also investigated after 17 months. The observed data showed some differences in concentration variation according to the types of pollutants. To improve IAQ on ships, more data need to be collected and minimum requirements suggested.  相似文献   

7.
Correctional centers (prisons) are one of the few non‐residential indoor environments where smoking is still permitted. However, few studies have investigated indoor air quality (IAQ) in these locations. We quantified the level of inmate and staff exposure to secondhand smoke, including particle number (PN) count, and we assessed the impact of the smoking ban on IAQ. We performed measurements of indoor and outdoor PM2.5 and PN concentrations, personal PN exposure levels, volatile organic compounds (VOCs), and nicotine both before and after a complete indoor smoking ban in an Australian maximum security prison. Results show that the indoor 24‐h average PM2.5 concentrations ranged from 6 (±1) μg/m3 to 17 (±3) μg/m3 pre‐ban. The post‐ban levels ranged from 7 (±2) μg/m3 to 71 (±43) μg/m3. While PM2.5 concentrations decreased in one unit post‐ban, they increased in the other two units. Similar post‐ban increases were also observed in levels of PN and VOCs. We describe an unexpected increase of indoor pollutants following a total indoor smoking ban in a prison that was reflected across multiple pollutants that are markers of smoking. We hypothesise that clandestine post‐ban smoking among inmates may have been the predominant cause.  相似文献   

8.
Continuous sampling is one of the common approaches for assessing indoor pollutant level. It is believed that the longer the measurement time, the higher the accuracy and confidence level of the measurement can be achieved. In 2003, the Hong Kong Environmental Protection Department (HKEPD) launched an Indoor Air Quality (IAQ) certification scheme to promote an acceptable IAQ in workplaces. However, measurement efforts and uncertainties associated with the sampling method have not been addressed. Alternative sampling schemes taking shorter measurements in the sampling period were proposed in some circumstances. In this study, the average carbon dioxide (CO2) concentration of a workplace is selected as an indicator of the indoor air quality to investigate the probable errors and measurement efforts in four sampling schemes, regarding the sampling period: in Scheme A, it is from a continuous sampling throughout the measurement; in Scheme B, it is from two sampling periods of two equal sessions of the measurement; in Scheme C, it is from two structural sampling periods of the two sessions; and in Scheme D, the average concentration is from four sampling periods in four equal sessions of the measurement. In particular, a year-round indoor CO2 concentration at 17 locations in a typical office in Hong Kong was used to evaluate the probable errors using these four sampling schemes. At certain confidence levels, the required measurement times of the alternative sampling schemes (Schemes B, C, D) were evaluated and compared with that of an 8-hour continuous one (Scheme A). It was found that Scheme C would offer a reduction of measurement effort up to 30%. It is recommended to specify the uncertainties and efforts of measurement in future codes, and to consider these sampling schemes in determining practical strategies for IAQ measurement.  相似文献   

9.
Volatile organic compounds (VOCs) are the major pollutants in indoor air, which significantly impact indoor air quality (IAQ). As a promising technique to remove VOCs, photocatalytic oxidation (PCO) takes the advantages of oxidation of a large range of VOCs with low energy consumption. In this study, the mass transports and reaction mechanism involved in the PCO process have been studied. In addition, the kinetic models of PCO on the different conditions of elementary reactions have been critically reviewed. Moreover, the factors that may affect the efficiency of PCO were interpreted based on the established fundamental mechanism of PCO. Some recommendations were made for future work to improve the efficiency of PCO system for building applications.  相似文献   

10.
《Energy and Buildings》2005,37(2):157-166
Many educational buildings in industrialised countries have poor indoor climate, according to today’s knowledge about the impact of indoor climate on well-being and productivity. Budget restrictions and practical limitations such as lack of space for central air handling units and ventilation ducts, have motivated the application of simplified ventilation systems in some schools, such as taking unconditioned supply air directly from the facade. One such school was recently evaluated in Norway.On cold days, thermal comfort in the classroom deteriorated due to cold downdraught from the supply outlet. In addition, moist and fertile conditions for microbiological growth were observed in the air supply ductwork. On the other hand the same pupils are more satisfied with the school and have less sick building syndrome (SBS) symptoms during winter than summer. An improved control strategy with a temperature-compensated CO2 set-point for controlling the airflow is suggested. This could improve thermal comfort and reduce energy use without compromising perceived air quality (PAQ) during cold weather. Furthermore it could improve indoor air quality (IAQ) during warm weather with only a slight increase of energy use. Further evaluation of an improved solution is needed before such a ventilation concept can be recommended in cold climates.  相似文献   

11.
Indoor air quality (IAQ) parameters in 73 primary classrooms in Porto were examined for the purpose of assessing levels of volatile organic compounds (VOCs), aldehydes, particulate matter, ventilation rates and bioaerosols within and between schools, and potential sources. Levels of VOCs, aldehydes, PM2.5, PM10, bacteria and fungi, carbon dioxide (CO2), carbon monoxide, temperature and relative humidity were measured indoors and outdoors and a walkthrough survey was performed concurrently. Ventilation rates were derived from CO2 and occupancy data. Concentrations of CO2 exceeding 1000 ppm were often encountered, indicating poor ventilation. Most VOCs had low concentrations (median of individual species <5 μg/m3) and were below the respective WHO guidelines. Concentrations of particulate matter and culturable bacteria were frequently higher than guidelines/reference values. The variability of VOCs, aldehydes, bioaerosol concentrations, and CO2 levels between schools exceeded the variability within schools. These findings indicate that IAQ problems may persist in classrooms where pollutant sources exist and classrooms are poorly ventilated; source control strategies (related to building location, occupant behavior, maintenance/cleaning activities) are deemed to be the most reliable for the prevention of adverse health consequences in children in schools.  相似文献   

12.
Conventional heating, ventilation, and air conditioning (HVAC) systems are incapable of providing control over individual environments or adjusting fresh air supply based on the dynamic occupancy of individual rooms in an office building. This paper introduces the concept of distributed environmental control systems (DECS) and shows that improvement in indoor air quality (IAQ) and energy efficiency can be achieved by providing required amounts of fresh air directly to the individual office spaces through distributed demand controlled ventilation (DDCV). In DDCV, fresh air is provided to each micro-environment (room or cubicle) based on input from distributed sensors (CO2, VOC, occupancy, etc.) or intelligent scheduling techniques to provide acceptable IAQ for each occupant, rather than for groups or populations of occupants. In order to study DECS, a numerical model was developed that incorporates some of the best available models for studying building energy consumption, indoor air flow, contaminant transport and HVAC system performance. The developed model was applied to a DECS in a model office building equipped with a DDCV system. By implementing DECS/DDCV and intelligent scheduling techniques it is possible to achieve an improvement in IAQ along with a reduction in annual energy consumption compared to conventional ventilation systems.  相似文献   

13.
The aim of this study was to evaluate the air quality of an indoor swimming pool, analyzing diurnal and seasonal variations in microbiological counts and chemical parameters. The results indicated that yeast and bacteria counts, as well as carbon dioxide (CO2), nitrogen oxides (NOx) and O3 concentrations, showed significant diurnal difference. On the other hand, temperature, relative humidity (R.H.), yeast counts and concentrations of CO2, particles, O3, toluene, and benzene showed seasonal differences. In addition, the relationship between indoor and outdoor air and the degree of correlation between the different parameters have been calculated, suggesting that CO2, fine particles and NOx would have indoor origin due to the human activity and secondary reactions favored by the chemical and environmental conditions of the swimming pool; while O3, benzene and toluene, would come from outside, mainly. The overall results indicated that indoor air quality (IAQ) in the swimming pool building was deficient by the high levels of CO2 and microorganisms, low temperatures, and high R.H., because frequently the limits established by the legislation were exceeded. This fact could be due to the poor ventilation and the inadequate operation of heating, ventilation, and air‐conditioning systems.  相似文献   

14.
In Hong Kong, the Environmental Protection Department (HKEPD) has launched an indoor air quality (IAQ) certification scheme to promote an acceptable IAQ in workplaces. However, the associated uncertainties and measurement efforts have not been detailed for practical measurement in indoor spaces. In this study, indoor carbon dioxide (CO2) concentration is selected as an indicator of the IAQ to investigate the probable errors and measurement efforts in different sampling schemes regarding the sampling point density. In particular, a one-year measurement for sample-spatial average indoor CO2 concentration at 17 sampling locations in a typical large office (floor area=1200 m2) has been used to evaluate the probable errors of the sample-spatial average concentrations using different sampling point densities. The result shows that the measured concentration at a single sampling point could not be representative for the space and more than one sampling locations would be required in order to increase the measurement accuracy. Mathematical expressions for the sample-spatial average concentration at a confidence level at certain sampling point densities are proposed. When doubled the required measurement points, it was found that the probability of obtaining a measured CO2 concentration at the confidence level of 95% could be increased from 70% to 90%, as compared with the current sampling practice. It is recommended to specify the measurement uncertainties in future codes so that effort for IAQ measurements in indoor spaces could be determined for practical strategies.  相似文献   

15.
To analyze the thermal performance and indoor air quality (IAQ) in building simultaneously and quickly, we have developed an integrated modeling tool to simulate the dynamic indoor multi-parameters distributions and concentrations. The tool can take the parameters including indoor temperature, indoor humidity, and pollutant concentrations (e.g., volatile organic compounds (VOC) CO2, particulate matter (PM)), as well as the heating/cooling load of heating, ventilating, and air-conditioning (HVAC) system into account. It couples a new zonal approach based on room air age. This paper presents the basic concept and flow chart in developing the modeling tool, and demonstrates the tool's application in a hypothetical health care building. The tool could be used for design of HVAC system with IAQ control devices and for the simultaneous analysis of thermal performance and IAQ in buildings.  相似文献   

16.
Indoor air quality (IAQ), as determined by the concentrations of indoor air pollutants, can be predicted using either physically based mechanistic models or statistical models that are driven by measured data. In comparison with mechanistic models mostly used in unoccupied or scenario‐based environments, statistical models have great potential to explore IAQ captured in large measurement campaigns or in real occupied environments. The present study carried out the first literature review of the use of statistical models to predict IAQ. The most commonly used statistical modeling methods were reviewed and their strengths and weaknesses discussed. Thirty‐seven publications, in which statistical models were applied to predict IAQ, were identified. These studies were all published in the past decade, indicating the emergence of the awareness and application of machine learning and statistical modeling in the field of IAQ. The concentrations of indoor particulate matter (PM2.5 and PM10) were the most frequently studied parameters, followed by carbon dioxide and radon. The most popular statistical models applied to IAQ were artificial neural networks, multiple linear regression, partial least squares, and decision trees.  相似文献   

17.
Indoor air quality (IAQ) in classrooms has a significant impact on children's academic performance, health, and well-being; therefore, understanding children's perception of IAQ is vital. This study investigates how children's perception of IAQ is affected by environmental variables and thermal sensation. In total, 29 naturally ventilated classrooms in eight UK primary schools were selected and 805 children were surveyed during non-heating and heating seasons. Results show that air sensation votes (ASVs) are more correlated to CO2 levels than to operative temperatures (Top) during non-heating seasons and more correlated to Top than CO2 levels during heating seasons. The impact of Top on ASVs decreases with an increase in CO2 levels, and the effect of CO2 levels on ASVs decreases with increase in Top. The most favorable ASVs are given when children feel “cool” and have “as it is” preference. By keeping CO2 < 1000 ppm and Top within children's thermal comfort band, ASVs are improved by 43%. The study recommends that standards should consider the impact of both temperature and CO2 levels on perceived IAQ. Perception of IAQ also affects children's overall comfort and tiredness levels; however, this influence is more significant on tiredness level than that on overall comfort level.  相似文献   

18.
Treatment of fresh air in ventilation systems for air-conditioned offices consumes a significant amount of energy and affects the indoor air quality (IAQ). In this study, energy impact on the ventilation systems was examined against certain IAQ objectives for indoor airborne bacteria exposure risk in air-conditioned offices of Hong Kong. The relationship between thermal energy consumptions and indoor airborne bacteria exposure levels based on regional surveys was investigated. The thermal energy consumptions of ventilation systems operating for carbon dioxide (CO2) exposure concentrations between 800 and 1200 ppmv for typical office buildings and the corresponding failure probability against some target bacteria exposure levels were evaluated. The results showed that, for a reference indoor environment at a CO2 exposure concentration of 1000 ppmv, the predicted average thermal energy saving of ventilation system for a unit increment of the expected risk of unsatisfactory IAQ of 1% was 55 MJ m−2 yr−1 and for a unit decrement of 1%, the predicted additional thermal energy consumption was 58 MJ m−2 yr−1 respectively. This study would be a useful source of reference in evaluation of the energy performance of ventilation strategies in air-conditioned offices at a quantified exposure risk of airborne bacteria.  相似文献   

19.
Indoor moisture management, which means keeping the indoor relative humidity (RH) at correct levels, is very important for whole building performance in terms of indoor air quality (IAQ), energy performance and durability of the building. In this study, the effect of combining a relative-humidity-sensitive (RHS) ventilation system with indoor moisture buffering materials was investigated. Four comprehensive heat–air–moisture (HAM) simulation tools were used to analyse the performance of different moisture management strategies in terms of IAQ and of energy efficiency. Despite some differences in results, a good agreement was found and similar trends were detected from the results, using the four different simulation tools. The results from simulations demonstrate that RHS ventilation reduces the spread between the minimum and maximum values of the RH in the indoor air and generates energy savings. Energy savings are achieved while keeping the RH at target level, not allowing for possible risk of condensations. The disadvantage of this type of demand controlled-ventilation is that other pollutants (such as CO2) may exceed target values. This study also confirmed that the use of moisture-buffering materials is a very efficient way to reduce the amplitude of daily moisture variations. It was possible, by the combined effect of ventilation and wood as buffering material, to keep the indoor RH at a very stable level.  相似文献   

20.
It is necessary to adopt appropriate control strategies to save energy and improve the indoor air quality (IAQ). On the validated TRNSYS simulation platform, four different control strategies are investigated to examine the indoor air temperature, energy consumption, CO2 concentration and predicted mean vote (PMV) for the variable air volume (VAV) systems in an office building in Shanghai. As an original scheme, Strategy A using constant outdoor air intake fraction shows high energy consumption, low CO2 concentration and acceptable thermal comfort. By using minimum outdoor air ventilation based on dynamic occupancy detection, Strategy B can provide more than 15% energy saving, acceptable PMV value but high CO2 concentration in breathing zone. By using indoor air temperature reset, Strategy C presents the most energy savings beyond 20% reduction, low CO2 concentration but poor thermal comfort. In mild seasons, combining enthalpy-based outdoor airflow economizer cycle with supply air temperature reset, Strategy D can achieve 9.4% energy savings and the lowest CO2 concentration. Taken together, each strategy covers some strengths as well as some weaknesses. How to comprehensively assess a control strategy for all specific objectives should be considered in future studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号