首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
《Building and Environment》2004,39(4):421-431
Efficient radiant heating and cooling systems are promising technologies in slashing energy bills and improving occupant thermal comfort in buildings with low-energy demands such as houses and residential buildings. However, the thermal performance of radiant systems in buildings has not been fully understood and accounted for in currently available building energy simulation software. The challenging tasks to improve the applicability of radiant systems are the development of an accurate prediction model and its integration in the energy simulation software. This paper addresses the development of a semi-analytical model for radiant heating and cooling systems for integration in energy simulation software that use the one-dimensional numerical modeling to calculate the heat transfer within the building construction assemblies. The model combines the one-dimensional numerical model of the energy simulation software with a two-dimensional analytical model. The advantage of this model over the one-dimensional one is that it accurately predict the contact surface temperature of the circuit-tubing and the adjacent medium, required to compute the boiler/chiller power, and the minimum and maximum ceiling/floor temperatures, required for moisture condensation (ceiling cooling systems), thermal comfort (heating floor systems) and controls. The model predictions for slab-on-grade heating systems compared very well with the results from a full two-dimensional numerical model.  相似文献   

2.
地板辐射供冷-置换通风的实验研究   总被引:2,自引:0,他引:2  
为了研究地板辐射供冷的热工性能,测试了北京地区不同室外气温下地板辐射供冷系统的运行工况,得到了该系统的制冷量,地板表面温度,室内温度场分布等参数,并且把单独地板辐射供冷系统的运行参数与地板辐射供冷-置换通风复合式系统进行了对比,提出了将地板辐射供冷与置换通风配合用于夏季空调室内供冷除湿的新型空调方式,置换通风系统在近地面处形成干燥空气层,可有效防止夏季热湿天气在地板表面出现结露现象,并且使这种新型空调系统条件下地面与室内的换热得到强化.通过理论分析和实验研究指出这是一种舒适、节能的空调方式.  相似文献   

3.
In radiant floor systems, the distribution of the floor surface temperature, which can be used to determine the mean temperature and the lowest/highest temperature of the floor surface, is an important parameter. The mean temperature of the floor surface determines cooling/heating capacity and indoor thermal comfort. The lowest surface temperature, which considers the dew point in an indoor environment, is a crucial factor in the prevention of condensation on a floor surface. The highest surface temperature is typically considered for local thermal comfort. In this paper, an analytical solution for heat transfer in a multilayer floor structure of a radiant floor system is proposed based on the analysis of the heat transfer process of a multilayer floor, equivalent thermal resistance and separation of variables method. The corresponding formulas are derived to estimate the distribution of floor surface temperature. The calculation results are validated by experiments. The calculation and experimental results show good accordance. The absolute error between the calculation and experimental results for floor surface temperature is within 0.3°C. A method for the calculation of the dimensionless temperature of the floor surface, which can be used for radiant heating and cooling systems, is provided. Using this proposed method, the distribution of floor surface temperature and the influence of floor structure parameters on the thermal performance of floors can be estimated and analyzed.  相似文献   

4.
EnergyPlus (EP) integrates a low temperature radiant system module to evaluate thermal performance of radiant systems such as thermally activated building systems (TABS), but the assumptions in this module neglect thermal resistance of the pipe and thermal resistance between the pipe exterior surface and the pipe level, which may result in the inaccurate evaluation of TABS in terms of surface temperature and surface heat flow. In this paper, in order to validate this module used in EP, steady and transient heat transfer processes of TABS in buildings were studied by analytical solution, two-dimensional numerical simulation and EP simulation. The comparison shows that the assumptions indeed result in a largely overestimated cooling and heating capacity of TABS. In order to improve this radiant module, a simple solution of introducing a no mass material layer with the neglected thermal resistances to both sides of the pipe level was proposed. With this method, the results of mean surface temperature and mean heat flow show good agreement with that from analytical solution as well as numerical simulation. Furthermore, the results of the simulation coupling the modified module with room systems show very small deviation from the results found in the literature. In addition, the application of the modified module in a hollow core concrete deck structure with TABS was investigated.  相似文献   

5.
In applying radiant floor cooling, its control system must prevent the floor surface condensation in hot and humid weather conditions. With no additional dehumidification system, only the radiant floor cooling system prevents floor condensation. In this case, the effects of the control of the cooling system on the indoor conditions can be changed because of the thermal inertia of the systems. Also different types of control system can be composed according to the control methods, which can affect the construction cost in the design stage. Therefore, the control methods for the radiant cooling system with respect to floor surface condensation must be studied. Furthermore, because Korean people's lifestyle involves sitting on the floor, it is necessary to evaluate if a floor cooling system will influence the thermal comfort of the occupants. This study intends to clarify the control methods of the radiant floor cooling system and to analyze the control performance and applicability of each control method with regard to the floor surface condensation and comfort by computer simulations and experiments on the control methods of the radiant floor cooling system. The results of computer simulations and experiments show that water temperature control is better than water flow control with respect to temperature fluctuations in controlling room air temperature. To prevent floor surface condensation, the supply water temperature could be manipulated according to the dew point temperature in the most humid room, and in individual rooms, the water flow rate (on/off control) can be controlled. Also, the results of radiant cooling experiments show that the floor surface temperature remained above 21 °C, the temperature difference among surfaces remained below 6 °C, and the vertical air temperature difference remained below 1.9 °C, conforming well to comfort standards.  相似文献   

6.
本文介绍了地板辐射供冷系统的室内外设计参数选取和负荷计算方法,通过采用CFD数值模拟的方法,分析了辐射供冷地板系统在不同的室内设计温湿度及冷水温度条件下的供冷量,冷损失量及表面温度等。应用该方法可以建立系统设计查找表格为地板辐射供冷系统设计提供基础数据。本文也给出了埋管辐射地板的系统布置方式及设计流程等。  相似文献   

7.
李廷贤  刘艳华 《暖通空调》2004,34(11):19-23
建立了辐射地板供暖的传热模型,利用SIMPLER计算程序模拟计算了地表装饰材料和埋管保温层性能对辐射地板换热和地表温度分布的影响,得出了地板内部的温度场分布规律。研究结果表明,地表装饰材料对地板换热有很大的影响,埋管保温层对减少地板下层热量损失有十分重要的作用。  相似文献   

8.
Earth-pipe-air heat exchanger (EPAHE) systems can be used to reduce the cooling load of buildings in summer. A transient and implicit model based on computational fluid dynamics was developed to predict the thermal performance and cooling capacity of earth-air-pipe heat exchanger systems. The model was developed inside the FLUENT simulation program. The model developed is validated against experimental investigations on an experimental set-up in Ajmer (Western India). Good agreement between simulated results and experimental data is obtained. Effects of the operating parameters (i.e. the pipe material, air velocity) on the thermal performance of earth-air-pipe heat exchanger systems are studied. The 23.42 m long EPAHE system discussed in this paper gives cooling in the range of 8.0-12.7 °C for the flow velocities 2-5 m/s. Investigations on steel and PVC pipes have shown that the performance of the EPAHE system is not significantly affected by the material of the buried pipe (pipe). Velocity of air through the pipe is found to greatly affect the performance of EPAHE system. The COP of the EPAHE system discussed in this paper varies from 1.9 to 2.9 for increase in velocity from 2.0 to 5.0 m/s.  相似文献   

9.
王洪成  李汛 《煤气与热力》2006,26(11):60-63
探讨了地板辐射供暖、供冷系统与置换通风系统的组合空调系统的流程,对组合空调系统进行了数值模拟。地板辐射供暖、供冷系统与置换通风系统相结合获得了良好的室内温度场和速度场,提高了空气品质,改善了室内的热舒适性。  相似文献   

10.
分析了塑料埋管地板辐射采暖的传热特点和铺设方式,通过热工性能的标准测试,指出地板辐射采暖是一种舒适节能的采暖方式,试验得出的热性能特征线为地板辐射采暖的设计计算提供了可靠的依据  相似文献   

11.
为将低品位可再生能源直接应用于采暖系统,提出了一种以碳钢/水重力式热管为加热管的低温辐射地板采暖方式,分析了其传热特性并对热工性能进行了实验研究。在不同供水温度(35~45oC)、供水流量(0.12—0.37m。/h)以及地板表面初始温度(26~30℃)下,分别得到了地板表面及热管壁面的温度分布、地板散热量和传热滞后时间等参数。实验结果表明:热管辐射地板可以在较低的供水温度下达到较高的散热量,供水温度可比常规塑料埋管地板降低5℃左右;地板升温快、蓄热好,升温期时间约为降温期时间的1/3;地板表面温度梯度合理,有利于减小热损失。根据实验结果拟合了低温热管辐射地板的散热量计算公式。  相似文献   

12.
塑料埋管地板辐射采暖的热性能分析   总被引:1,自引:0,他引:1  
分析了塑料埋管地板辐射采暖的热传特点和辅设方式,通过热工性能的标准测试,指出双回形铺设的塑料埋管地板辐射采暖是一种舒适的采暖方式,试验得出的热性能特征线为地板辐射采暖的设计计算提供了依据。  相似文献   

13.
张亚立  王佳 《暖通空调》2007,37(6):24-26
介绍了空调冷热源及系统的设计特点和控制方法,详细阐述了土壤换热器的结构及设计形式。采用地板辐射供冷供热结合新风置换通风的方案,重点考虑了围护结构的热工性能、楼板蓄热效应以及防结露措施。采用带室温反馈的室外温度控制方式(前馈-反馈控制)解决了地板辐射供冷系统调节反应速度延迟问题。  相似文献   

14.
地板辐射与置换通风空调系统运行参数   总被引:1,自引:0,他引:1  
建立了基于EnergyPlus的地板辐射供冷加置换通风空调系统模型,模拟得到的室内温度和辐射地板所承担冷量与实验结果的误差小于±7%。在此模型基础上,改变送风参数和供水参数,得到置换通风供冷量、辐射地板供冷量、地板表面温度、室内空气平均温度、AUST温度等参数的变化规律。结合热舒适性模型,得到满足室内热舒适性(-0.5≤PMV≤0.5)条件下,置换通风的送风参数和辐射地板的供水参数范围,为复合系统设计和应用提供依据。  相似文献   

15.
无保温楼板辐射供冷系统热过程的研究   总被引:1,自引:0,他引:1  
楼板辐射供冷是一种舒适度很高的新型空调技术:楼板内若不设保温层,天棚和地板均成为冷辐射表面向房间供冷:系统的供冷能力和楼板上下表面温度是空调供冷系统运行和调节的关键参数,研究它们与影响因素之间的关系是十分重要的。本文建立了无保温楼板辐射供冷系统的物理模型和数学模型,并对控制方程进行数值模拟,给出了系统供冷能力和楼板上下表面温度和诸多影响因素之间的关系。研究结果显示:冷水温度越低,天棚和地板的表面温度越低,系统提高的冷量越大;天棚表面温度略大于地板表面温度;随着冷水温度的升高,天棚和地板之间的温度差异将减小,房间的舒适性好;地板辐射换热量远大于对流换热量,天棚辐射换热量略大于对流换热量;天棚提供给房间的冷量大于地板提供的冷量。且冷水温度越低,相差越大;管子埋深越大,天棚和地板表面温度越大,系统供冷量越小,但差别不显著;埋管间距越大,天棚和地板表面温度越大,系统供冷量越小;埋管管径越大,天棚和地板温度越小,系统供冷量越大,但差异不显著。研究结果可为实际工程的设计、运行参数的选择和系统的可行性分析提供依据和指导。  相似文献   

16.
基于蒸发冷却的地板辐射供冷能力探讨   总被引:6,自引:0,他引:6  
基于蒸发冷却的地板辐射供冷空调系统供冷能力,从其主要影响因素的管间距和覆盖层传热阻进行对比分析,进而指出其供冷能力的变化规律,同时结合了工程实例进一步阐明了该供冷能力变化规律在工程设计中的具体应用,以期使更多的工程设计人员了解该新型复合式空调系统的特性及设计思路,为工程设计人员提供有益的参考.  相似文献   

17.
In this paper, a calculation method for the floor surface temperature in radiant floor heating/cooling system is proposed, a new formula is derived to estimate the floor surface temperature. The floor is divided into two layers. The correlation for the thermal conductivity of the lower layer is developed based on the numerical model of the radiant floor system built in this paper. The results show that the floor surface temperature values from the proposed method are in agreement with the experimental and numerical values.  相似文献   

18.
低温热水地板辐射采暖系统设计   总被引:9,自引:4,他引:9  
回顾了低温热水地板辐射采暖技术的发展历程;分析了作为加热管的四种主要管材的物化性能;阐述了地板辐射采暖房间热负荷的设计方法;探讨了地板辐射采暖系统的设计步骤;给出了采暖地面散热量数值、地表面温度计算公式、水力计算表;并就大家十分关心的水力工况稳定性、系统造价、加热管寿命、技术措施、应用场合等问题等进行了分析与讨论。这结于地板辐射采暖系统的设计具有一定的参考价值。  相似文献   

19.
Few field studies of energy performance of radiant cooling systems have been undertaken. A recently constructed 17,500 m2 building with a multi-floor radiant slab cooling system in the tower was investigated through simulation calibrated with measured building energy use and meteorological data. For the very cold, dry region where the building was located, it was found that a typical floor of the tower would have had 30% lower annual energy use with a conventional variable air volume system than with the as-built radiant cooling-variable air volume combination. This was due to (1) simultaneous heating and cooling by the existing radiant cooling and air systems, (2) the large amount of free cooling possible in this climate, and (3) suboptimal control settings. If these issues were remedied and combined with improved envelope and a dedicated outdoor air system with exhaust air heat recovery, a typical floor could achieve annual energy use 80% lower than a typical floor of the existing building HVAC system. This shows that radiant thermal control can make a significant contribution to energy-efficiency, but only if the building design and operating practices complement the strengths of the radiant system.  相似文献   

20.
由于地板层的热容量较大,地板辐射空调系统的调节控制必须考虑房间热惰性的影响。建立了以热泵机组为冷热源的地板辐射空调系统的预测控制模型,该模型利用RBF人工神经网络技术,根据预测出的下一时刻的房间温度值来控制热泵机组的运行时间并调节房间的温度。将此预测模型用于实验系统冬季供暖工况房间温度的调节控制,实验结果表明,房间温度的预测值与实测值比较吻合。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号