首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to develop the microspheres from gelatin (G) and silk fibroin (SF) aimed to be applied for the controlled release of curcumin and piperine. The glutaraldehyde-crosslinked G/SF microspheres at various weight blending ratios (100/0, 70/30, 50/50, and 30/70) were successfully fabricated by water in oil emulsion technique. The microspheres prepared from all compositions were in a round shape with homogeneous size distribution both in the dried (194–217 μm) and swollen states (297–367 μm). When subjected in collagenase solution at physiological condition, the G microspheres gradually degraded within 14 days while the blended G/SF microspheres, particularly at 50/50 and 30/70, were not degraded. For the release application, the microspheres were loaded with curcumin and/or piperine. It was found that the microspheres composed of SF tended to entrap curcumin and piperine with the high entrapment and loading efficiencies, possibly due to their hydrophobic interactions. The G/SF microspheres, particularly at the ratios of 50/50 and 30/70, released curcumin and piperine in a sustained manner both for the single and dual release systems. The controlled dual release of curcumin and piperine from the G/SF microspheres would prolong their half-life, provide the optimal concentrations for therapeutic effects at a target site, and improve the bioavailability of curcumin. These novel injectable microspheres dually releasing curcumin and piperine would be introduced for the treatment of diseases without the need of operation.  相似文献   

2.
In this study, we prepared injectable collagen microspheres for the sustained delivery of recombinant human vascular endothelial growth factor (rhVEGF) for tissue engineering. Collagen solution was formed into microspheres under a water-in-oil emulsion condition, followed by crosslinking with water-soluble carbodiimide. Various sizes of collagen microspheres in the range of 1–30 μm diameters could be obtained by controlling the surfactant concentration and rotating speed of the emulsified mixture. Particle size proportionally decreased with increasing the rotating speed (1.8 μm per 100 rpm increase in the range of 300–1,200 rpm) and surfactant concentration (3.1 μm per 0.1% increase in the range of 0.1–0.5%). The collagen microspheres showed a slight positive charge of 8.86 and 3.15 mV in phosphate-buffered saline and culture medium, respectively. Release study showed the sustained release of rhVEGF for 4 weeks. Released rhVEGF was able to induce capillary formation of human umbilical vein endothelial cells, indicating the maintenance of rhVEGF bioactivity after release. In conclusion, the results suggest that the collagen microspheres have potential for sustained release of rhVEGF.  相似文献   

3.
A high-voltage (10 kV) electrostatic antisolvent process was used to prepare methotrexate (MTX)-loaded, large, highly-porous poly-l-lactide (PLLA) microspheres. MTX solution in dimethyl sulfoxide (DMSO) and PLLA solution in dichloromethane (DCM) were homogeneously mixed, and then ammonium bicarbonate (AB) aqueous solution was added. The mixed solution was emulsified by ultrasonication with Pluronic F127 (PF127) as an emulsion stabilizer. The emulsion was electrosprayed by the specific high-voltage apparatus and dropped into a 100 mL of ethanol, which acted as an antisolvent for the solute and extracted DMSO and DCM, causing the co-precipitation of PLLA and MTX, thus forming microspheres with AB aqueous micro-droplets uniformly inlaid. The obtained MTX–PLLA microspheres were subsequently lyophilized to obtain large, highly-porous MTX–PLLA microspheres, which exhibited an identifiable spherical shape and a rough surface furnished with open pores, with a mean particle size of 25.0 μm, mass median aerodynamic diameter of 3.1 ± 0.2 μm, fine-particle fraction of 57.1 ± 1.6 %, and porosity of 81.8 %; furthermore, they offered a sustained release of MTX. X-ray diffraction and Fourier transform-infrared spectra revealed that no crystallinity or alteration of chemical structure occurred during the high-voltage electrostatic antisolvent process, which in this study was proved to have great potential for preparing highly-porous drug-loaded polymer microspheres for use in pulmonary drug delivery.  相似文献   

4.
We developed a new procedure for synthesizing micrometric magnetite by hydrothermal decomposition of the Fe-EDTA complex in the presence of urea, starting from Fe(III)-ferric ammonium sulfate and Na4EDTA as main precursors. Microcrystals with superparamagnetic behavior with 25–45 μm in size were obtained (5 emu/g at 3.8 kOe magnetic field).  相似文献   

5.
Resveratrol-loaded calcium alginate microspheres for prolonged drug release were prepared by ionic gelation of alginate with calcium chloride (CaCl2). Further, resveratrol-loaded calcium alginate microspheres were developed using two concentrations of alginate (0.5 and 1 % w/v) and CaCl2 (0.5 and 1 M) and an encapsulator equipped with a 300-μm nozzle. The mean particle size of the microspheres was between 175.52 and 244.03 μm, and an encapsulation efficiency (EE) of over 95 % was observed. FTIR spectroscopy indicated a polyelectrolyte interaction between alginate and CaCl2; alginate microsphere thermograms were analyzed by differential scanning calorimetry. X-ray diffraction shows the crystalline change of microspheres by cross linking. The release profiles and EE increased depending on the CaCl2 concentration, and a slow initial burst release was observed on freeze-dried microspheres. These results indicate that resveratrol-loaded calcium alginate microspheres can be used as a potential resveratrol delivery system in the food industry.  相似文献   

6.
ABSTRACT

The present research work is a novel cost-effective method for synthesis of magnetite. Magnetite is a carrier which is used in the targeted drug delivery system. The conventional methods of preparation of magnetite take around 6–7 h for the completion of reaction; moreover, the particle size of magnetite which we get by the conventional methods is above 5 µm, so the present work aims at preparing magnetite with microwave assistance which has found to reduce reaction time with particle size obtained below 5 µm. The aim of this study was to optimize magnetite synthesis using 23 factorial design by Design-Expert software. Magnetites were synthesized using oxidation of ferrous sulfate. In the next step, the effects of different variables on particle size are studied, including the stirring speed, microwave power (W), and stirring time. Based on the type and the variables studied, eight formulations were designed using factorial design method, and were then prepared, and their particle size was determined. Finally, selected magnetite syntheses were evaluated from the viewpoints of scanning electron microscopy (SEM) and x-ray diffraction (XRD). Results revealed that magnetite obtained from the solutions generated Design-Expert software could be selected as the best and optimized formulations due to their lowest particle size.  相似文献   

7.
In this work, hollow ferrite microspheres were prepared using a gas-phase diffusion method with cobalt nitrate and ferric nitrate as metal salt sources, an ionic liquid 1-butyl-3-methylimidazolium-tetrafluoroborate and water-mixed solvent as medium and ammonium carbonate as precipitant. Their structures and magnetization were characterized by transmission electron microscopy, scanning electron microscopy, X-ray diffraction, thermogravimetry, infrared spectroscopy, and vibrating sample magnetometer. The effects of reaction time, reaction temperature, precipitant loading, and mole ratio of Co to Fe n(Co/Fe) on the structures and magnetization of the microspheres were studied. The results showed that ferrite hollow microspheres with uniform morphology and high-magnetic performance were obtained at 60–80 °C for 12–16 h, while the (NH4)2CO3 loading was 0.15 g/ml, n(Co/Fe) was 0.5:1, and calcination temperature was 550 °C. The obtained products consisted of CoFe2O4 phase accompanied by ferric oxide phase, with an average particle size about 1 μm and magnetization intensity about 10 emu/g.  相似文献   

8.
Molecularly imprinted poly(hydroxyethyl methacrylate) microspheres (PHEMA MIPMs) were prepared via precipitation polymerization in this article, using gatifloxacin (GFLX), hydroxyethyl methacrylate (HEMA), and ethylene glycol dimethacrylate (EGDMA) as template molecule, functional monomer and cross-linker, respectively. The effects of reaction medium, initial total monomers, cross-linker and molecular imprinting on the polymerization were investigated systematically. The interaction between GFLX and HEMA in pre-solution was studied by UV–Visible spectrophotometer, both size and morphology of products were characterized by a scanning electron microscope. When the total initial monomer concentration was 1 vol%, EGDMA content was 70 mol%, a group of uniform PHEMA MIPMs were prepared at different GFLX/MAA molar ratios, with diameter range from 2.06 ± 0.07 to 2.82 ± 0.20 μm. The results of drug loading and in vitro release experiments demonstrated that PHEMA MIPMs could achieve a higher GFLX loading content and a more acceptable sustained release than non-imprinted ones.  相似文献   

9.
In this study, ZrB2 was prepared from ZrOCl2.8H2O, H3BO3 and citric acid by using the gel method. The gel was dried at 400 °C and then it was calcined at 1500 °C. The prepared 0.5–1 μm ZrB2 powder was encapsulated into the Cu tube. For the purpose of coating ZrB2 on Cu metal, the roll-milling of ZrB2 particles inside the cylindrical Cu tube has been performed at room temperature. The prepared ZrB2 coating on Cu was analyzed by using FE-SEM, EDS, XRD, electrical resistivity and CV measurements. The final ZrB2 particle size on the surface of the coating layer was below 100 nm, and the coating thicknesses were about 15–20 μm. The long nanofiber like ZrB2 structures was observed. The coating of nano ZrB2 on Cu was achieved by using this novel roll-milling process which is an environmental friendly, low cost and practical technique.  相似文献   

10.
A novel water-compatible surface-imprinted core–shell microsphere, which had multiple non–covalent interactions with template molecule, was successfully prepared by the surface grafting polymerization method in acetonitrile–water systems with thymopentin as template through ionic liquid-functionalized polyethyleneglycolmethacrylate-co-vinylimidazole microsphere as the matrix. The average diameter of matrix was 1 μm ± 20 nm and the thickness of imprinted layer was about 50 nm. The results of static adsorption experiments indicated that ionic liquid-functionalized molecularly imprinted microspheres showed the good adsorption capacity and specific recognition for template peptide. The binding-isotherm analysis showed that Langmuir isotherm models gave a good fit in the range of concentrations, suggesting that there was only one kind of binding site in imprinted layer. Measurements of the binding kinetics revealed that surface-imprinted composite microspheres reached peptide-adsorption equilibrium in 60 min and the maximum adsorption capacity for TP5 was 38.4 mg g?1. The effects of pH, salt concentration, and temperature on the adsorption capacities were investigated. The microspheres were found to have a high specificity for TP5 with little affinity for BSA and Hb. Finally, the core–shell microspheres can be reused with only 15.6 % decrease in TP5 adsorption capacity after six times.  相似文献   

11.
In this paper, the aluminum/polymer composite coating was prepared and the infrared emitting properties and environmental stability performance of the as-prepared coating were studied. The factors, such as polymer binders, pigment/binder ratios, preparation technology and coating thickness were investigated in detail. Firstly, the study of the polymer binders indicated that modified fluorocarbon resin was the best candidate due to its low infrared emissivity and well-performed physical and chemical properties. Secondly, the optimal pigment/binder ratio was 1.25:1. Thirdly, the optimum coating thickness was 75 μm and the scrape coating method was suitable to prepare the coating. Finally, the optimized aluminum/polymer composite coating showed low infrared emissivity of 0.31. The adhesive force of the coating was first grade and the impact resistance was more than 50 kg cm. In addition, it exhibited excellent salt, acid and alkali resistance. The as-prepared aluminum/polymer composite coating can be used as infrared stealth coating in the wavelength of 8–14 μm.  相似文献   

12.
以聚乙二醇为引发剂,L-丙交酯为单体,开环聚合得到聚乳酸-聚乙二醇三嵌段共聚物(PLLA-PEG-PLLA),采用溶剂挥发法制备了PLLA-PEG-PLLA/Fe_3O_4磁性微球,并通过扫描电镜对其形态进行了表征。利用振动样品磁强计和Tg研究了微球的磁含量和磁性能,结果发现,相同粒径不同磁含量的磁性微球,磁含量越高,升温速率越快,当磁含量为70.57%时,升温速率最快,能达到磁热疗的有效温度42℃。对于磁含量相同,粒径不同的微粒,粒径越小,升温速率越快,粒径约为10μm时升温速率最快。  相似文献   

13.
This paper investigates the grindability of calcite powder (D50 = 6.68 µm) to submicron particle sizes using stirred media mill (0.75 l) and ultrasonic generator (400 W, 24 kHz). The present study focuses directly on the comminution of calcite powder in water media by combined stirred milling and ultrasonic treatment and effects of some operational parameters such as grinding time (10–30 min), ultrasonic power (40–100% µm as amplitude settings), and solid ratio (10–30% w/w) on comminution. Experimental results have been evaluated on the basis of product size and width of particle size distribution.  相似文献   

14.
Silica/ammonium persulfate (APS) microspheres were fabricated by coating APS on the surface of ~2 μm sized silica particles and applied as a candidate for electrorheological (ER) materials. The morphologies of these particles were observed by SEM. Chemical compositions and structure of the particles were confirmed by EDS and FT-IR. Thermogravimetric analysis was used to examine the amount of APS coating on the silica particles. A 10 vol% ER fluid based on the fabricated particles was prepared by dispersing them into hydroxyl group-terminated silicone oil. Typical ER properties were obtained using a rotational rheometer under an applied electric field at a controlled shear rate test. These properties were also correlated with its dielectric spectra.  相似文献   

15.
Copper-doped bismuth vanadate (Bi2Cu0.1V0.9O5.35, BICUVOX) was synthesized by a co-precipitation process which resulted in a homogenous, fine-grained powder with an average particle size of ~0.45 μm. The consolidated BICUVOX powder was sintered at temperatures between 625 and 800 °C for 0–8 h in air. The correlation between the thermal processing schedule and the final microstructure were completed for all conditions through stereological analysis of the resultant cross-sectional scanning electron microscope images. From this work, the sintering schedule of 675 °C for 1 h resulted in acquiring a BICUVOX ceramic microstructure that displayed ~97 % relative density with an average grain size of ~1.29 μm. This processing condition was ~75–125 °C lower than typical sintering temperatures for the same density, and resulted in a final grain size that is ~5–10 μm smaller in size. The four-point conductivity testing of the BICUVOX ceramics in air showed values of ~0.003–0.007 and ~0.07–0.12 S/m at 300 °C and 500 °C, respectively, depending upon the thermal processing schedule. The average flexure strength of the same BICUVOX membrane was measured using a ring-on-ring configuration, and this measurement showed flexural strengths as high as 159.3 MPa. This strength is ~92 % greater than previously reported values for BICUVOX membranes.  相似文献   

16.
Silicon carbide (SiC) composites containing 0–50 mass% of chopped Tyranno® Si–Al–C (SA) fiber (mean length: 214 μm (SA(214)), 394 μm (SA(394)), and 706 μm (SA(706)) were fabricated using the hot-pressing technique at 1800 °C for 30 min under a uniaxial pressure of 31 MPa in Ar atmosphere. The maximum flexural strength of the SiC composite was 344 MPa for 30 mass% of SA(706) fiber addition, whilst the maximum fracture toughness was 4.7 MPa m1/2 for 40 mass% of SA(706) fiber addition. Increasing the mean fiber length from 214 to 706 μm decreased the flexural strength from 380 to 281 MPa for 30 mass% of fiber addition, whilst the fracture toughness increased from 3.4 to 4.7 MPa m1/2 for 40 mass% of fiber addition. Through use of a treated SA(706) fiber containing an approximately 100 nm surface layer of carbon, the fracture toughness further increased to 6.0 MPa m1/2 for 40 mass% of fiber addition; this value was more than twice that of the monolithic SiC ceramic and is believed to be the highest so far achieved for this type of SiC/SiC composite containing chopped fibers.  相似文献   

17.
We report on an experimental investigation of the tumbling of microrods in the shear flow of a microchannel (dimensions: 40 mm ×  2.5 mm ×  0.4 mm. The rods are 20–30 μm long and their diameters are of the order of 1μm. Images of the centre-of-mass motion and the orientational dynamics of the rods are recorded using a microscope equipped with a CCD camera. A motorised microscope stage is used to track individual rods as they move along the channel. Automated image analysis determines the position and orientation of a tracked rod in each video frame. We find different behaviours, depending on the particle shape, its initial position, and orientation. First, we observe periodic as well as aperiodic tumbling. Second, the data show that different tumbling trajectories exhibit different sensitivities to external perturbations. These observations can be explained by slight asymmetries of the rods. Third, we observe that after some time, initially periodic trajectories lose their phase. We attribute this to drift of the centre of mass of the rod from one to another streamline of the channel flow.  相似文献   

18.
The present study envisages the preparation of microspheres containing indomethacin (IM) as model drug and bees wax as carrier, and to compare the in vitro release and pharmacokinetics of prepared IM formulation with commercially available oral formulation Microcid®SR. The microsphere formulations were prepared by meltable emulsified dispersion and cooling induced solidification. Surface morphology of microspheres has been evaluated using scanning electron microscopy (SEM). The SEM images revealed the spherical shape of microspheres and more than 98.0% of the isolated microspheres were in the size range 115–855 μm. Differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopy studies indicated that the drug after encapsulation with bees wax was stable and compatible. A single dose randomized complete cross over study of IM (75 mg) microspheres was carried out on 8 healthy Albino sheeps. Plasma IM concentrations and other pharmacokinetic parameters obtained were statistically analyzed. The T max, C max, AUCO-24 and T 1/2 values of Microcid®SR and optimized formulation were 3.0 h, 2038 ± 51.31 ng/ml, 9528 ± 129.65 ng/ml h?1, and 2.59 ± 0.02 h?1; and 3.2 h, 1940 ± 22.61 ng/ml, 8751 ± 41.32 ng/ml h?1, and 2.68 ± 0.02 h?1, respectively. Beeswax microspheres showed controlled release and it can be concluded that both the prepared formulation and Microcid®SR are bioequivalent.  相似文献   

19.
《Thin solid films》2005,471(1-2):105-112
The effects of ethylene glycol (EG) on morphology and texture of the magnetite shell/core polystyrene microspheres produced from a forced hydrolysis reaction of FeCl2 solution were investigated. The morphology of magnetite-shell of synthetic composite spheres was dependent on EG concentration. They changed from large sphere with the shell-thickness of ca. 35 nm to corrugated films with increasing EG concentration in the coating solution accompanying a reduction of their shell-particles size to 10 nm. The magnetite coating on latex is formed by a phase transformation from β-FeOOH to magnetite due to the oxidation from Fe2+ to Fe3+ and adsorption of a lot of Fe2+ ions. The shell magnetite formed with EG was hydro-magnetite with a crystal lattice distortion, and they exhibited a polycrystalline nature. The nanoporous magnetite shell was produced in the presence of EG acting as a templating agent. This paper indicates that good superparamagnetic magnetite particles in shell have been synthesized at 5% EG concentration.  相似文献   

20.
Three-dimensional (3D) hierarchical structure InVO4 porous microspheres were fabricated by a hydrothermal method with the assistance of cetyltrimethyl-ammonium bromide (CTAB). X-ray diffractometer, scanning electron microscopy, transmission electron microscopy, adsorption analyzer, diffuse refection spectroscopy, UV–Vis spectroscopy, and photoluminescence spectroscopy were adopted to analyze the structure–property relationship of samples, and the formation mechanism was also discussed. The results show that the concentration of CTAB solution has important influence on the grain size, crystal structure, and morphology of as-synthesized InVO4 samples, thus affecting the optical property and photocatalytic activity. When the concentration of CTAB solution is 1 wt%, we can obtain perfect 3D hierarchical porous microspheres. Such microspheres with diameter size about 2–5 μm are assembled by numerous nanocrystals, and exhibit an enhanced photocatalytic activity in the degradation of Rhodamine B under visible light irradiation. Moreover, Oswald ripening and self-assembly aggregation are presumed to play an important role in the formation of these 3D hierarchical structure InVO4 porous microspheres.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号