首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
基于内容算法与社会过滤算法都是迄今为止在社交网络中较为成功的好友推荐算法。结合两者的优点,根据用户已有的好友来给用户推荐新的好友,并与用户的兴趣爱好、地理位置等个人信息相结合的方式来处理好友推荐问题。通过实验验证以及准确率和召回率的评测显示,改进的算法比传统的好友推荐算法在推荐性能上有较为明显的提高。  相似文献   

3.
链路预测是复杂网络的一个重要研究方向。基于节点结构相似性进行链路预测是目前常用的方法。真实网络中存在大量的局部群落结构,针对不同的网络结构构建算法是链路预测的核心问题。利用社交网络好友推荐策略,中介人倾向于将自己更熟悉的人介绍给目标用户,提出了一种节点相似性度量指标。该指标结合局部特征描述并有效区分了用户节点之间影响力的不同,更适用于一类特定的局部群落结构。依据该指标提出的加权好友推荐模型链路预测算法在12个数据集上的实验结果表明,该算法在AUC和Precision两个评价标准上具有明显优势。  相似文献   

4.
王珊珊  冷甦鹏 《计算机应用》2016,36(9):2386-2389
针对移动社会网络(MSN)的好友推荐问题,提出了一种基于多维相似度的好友推荐方法。该方法隶属于基于内容的好友推荐,但与现有方法相比,不再局限于单一维度的匹配信息,而是从空间、时间和兴趣三个维度出发,判断用户在各个维度上的相似度,最终通过“差异距离”进行综合评判,向目标用户推荐与之在地理位置、在线时间和兴趣爱好上更具一致性的其他用户成为其好友。由实验结果表明,该方法应用于移动社会网络中的好友推荐服务时,其推荐结果查准率接近80%,查准效率接近60%,性能远高于只基于单一维度的好友推荐方法;同时,通过对三维权重值的调整,该方法可应用于多种特性的移动社会网络中。  相似文献   

5.
《计算机工程》2017,(5):149-155
为体现出在线社交网络中好友推荐时的用户倾向性,并且更真实反映现实生活中人与人之间的关系强度,将用户间的好友关系强度定义为信任度引入到相邻边拓扑信息相似性计算中,并结合用户兴趣模型导出用户社交圈,提出一种好友推荐算法。针对用户社交圈中未考虑好友间信任度的情况,将信任度融入到社交圈重叠程度计算中为用户发现其潜在的好友提供建议。实验结果表明,与基于社交圈相似性和公共朋友相似性的好友推荐算法相比,该算法具有更高的好友推荐准确率。  相似文献   

6.
社会网络服务(SNS)用户的人脉关系研究大多采用图论的知识,对社会网络关系图的结点和边进行探讨,而没有考虑到用户自身的偏好.因此提出一种基于用户偏好的二级人脉推荐方法.利用最小均方误差(LMS)算法,把用户偏好合理地转化为用户偏好特征向量,用相似度度量方法来计算用户之间的相似度,以确定与用户偏好最相近的用户集,并完成用户的二级好友推荐.实验结果表明,该算法的好友推荐准确度较高.  相似文献   

7.
社交网络用户的指数型增长,导致用户在网络中难以找到适合自己的好友.提出一种基于多目标检测算法SSD和时序模型的微博好友推荐算法BSBT-FR,首先利用SSD对搜集到的用户图像进行信息提取,再利用时序模型在时间维度上对提取到的信息做进一步处理,然后利用JS散度公式计算用户间的相似度,最后与基于用户个人信息得出的相似度进行...  相似文献   

8.
肖迎元  张红玉 《计算机科学》2018,45(3):218-222, 252
随着Facebook、Twitter、微博等社交网站的迅速普及,好友推荐系统逐渐成为各大社交网站的重要组成部分。好友推荐系统通过主动为用户推荐新的潜在好友来有效地扩大用户的社交圈规模并改善用户的社交体验,因而受到了广泛关注。然而,如何针对用户的个性化需求,为用户推荐真正意义上的好友,一直是个性化好友推荐的难点之一。对此,提出一种基于用户潜在特征的社交网络好友推荐方法(SNFRLF)。首先,通过隐语义模型挖掘用户的潜在属性特征;然后,通过用户的潜在特征计算用户间的相似度;最后,将计算得到的相似度引入到随机游走模型中以获得好友推荐列表。实验结果表明,文中所提好友推荐方法较已有的好友推荐方法在性能上有显著提升。  相似文献   

9.
社交网络经常通过掌握的用户信息来对其进行好友推荐。这种好友推荐带来了技术挑战,现有的好友推荐技术并不能有效解决该问题。为了应对这种技术挑战,拟提出基于分类属性的好友推荐算法。通过机器学习的手段,分析出不同类型的属性对用户行为的贡献度不同,将其进行分类处理。基于该分类,提出的算法可以在掌握用户基本资料以及近期行为的基础上,搜索出与之相关性更强的好友或能够引发其兴趣点的商品,用来快速、准确、全面地得到用户与其好友之间亲疏程度排序及分类的结果。实验结果证明了所提出方法的有效性及高效率。  相似文献   

10.
个性化的好友推荐是促进社交网络服务不断提高的重要途径,在大规模的社交网络环境中,准确地为用户推荐兴趣主题相似的好友能够使得用户的粘性更强,然而海量数据的稀疏性使得现有的大多数社交网络都不能够准确根据用户间兴趣的相似性进行好友推荐。为此,提出一种面向用户兴趣主题的个性化好友推荐方法(ITOR)。该方法首先采用k-core分析法提取用户的兴趣主题,在拥有相似兴趣主题的基础上结合用户属性信息,通过先验概率计算出有相同属性信息的用户成为好友的概率,进一步强化推荐结果的准确性和满意度。最后,通过爬取2015年9月份发布的新浪微博数据进行实验分析,验证了本推荐方法的有效性。  相似文献   

11.
社交网络虽然实现了网络化的人际信息交流和交友.但同时也存在着大量的例如个人隐私信息泄露等问题。面对这种情况,计算机学术界提出一种基于博弈论的能够避免泄露用户隐私信息的新型的社交网络的访问控制方法。就这一基于博弈论的社交网络控制方法进行相关的简述和分析,以便于人们了解和认识这种社交网络的博弈论控制方法。  相似文献   

12.
刘慧婷  程雷  郭孝雪  赵鹏 《计算机科学》2018,45(9):253-259, 265
目前很多社交网络服务对用户的个性化需求考虑得不充分,并且社交网络服务由于需要处理海量数据而难以保障服务的实时性。为了实时响应用户在微博推荐中的个性化请求,提高推荐的效率和质量,提出了一种基于LDA主题模型和KL散度相结合的RPMPS微博推荐模型。RPMPS推荐模型不但通过文档-主题概率分布矩阵获得了用户信息与待推荐微博的主题相似性,而且还通过文档-词来对词频概率进行统计,从而获得用户信息与待推荐微博的内容相似性。最后,基于RPMPS推荐模型构建实时个性化微博推荐系统,并在数据处理过程中对微博进行过滤以缩短系统的响应时间。通过真实数据集验证了系统可较好地满足用户的实时个性化需求。  相似文献   

13.
个性化推荐正成为“互联网+”和“大数据”时代信息网络服务的基本形式,虽然其已在电子商务和社交媒体的广泛应用中产生了巨大的商业价值,但在具有巨大潜在社会价值的个性化知识学习领域,相关研究与应用还较为稀少.研究提出一种基于建构主义学习理论的个性化知识推荐方法——建构推荐模型.新模型首先考虑将知识系统以知识网络的形式进行表达,随后引入最近邻优先的候选知识选择策略,以及基于最大可学习支撑度优先的top-K未学知识推荐算法.建构推荐模型通过知识网络的知识关联结构挖掘用户知识需求,并推荐给出最具建构学习价值的待学新知识.以饮食健康知识系统学习为例的实验分析表明,新模型在多种情况下推荐产生的个性化知识序列均具有较强的知识关联性和较高的知识体系覆盖率.  相似文献   

14.
张丰  王箭  赵燕飞  杜贺 《计算机科学》2014,41(5):168-172
信任度计算一直是社交网络中备受人们关注的问题,而对陌生节点的信任度计算更是其中的研究热点。目前多数的信任模型由于推荐证据的不完整使得对陌生节点信任度计算准确性不高。随着社区数量的不断增多,基于社区的社交网络成为当今社交网络发展的一种趋势,引入社区推荐模型替代原有的节点推荐模型来提高推荐证据的完整性和可靠性,进而提高陌生节点信任度计算的准确性;同时考虑友群信任度对社区信任度的影响,并给出社区关联度因子来解决社区推荐可能存在的合谋攻击。最后,通过仿真实验验证了该模型的合理性和有效性。  相似文献   

15.
俞春花  刘学军  李斌 《计算机科学》2016,43(6):248-253, 279
作为解决信息过载问题的有效方式,推荐系统能够根据用户偏好对海量信息进行过滤,为用户提供个性化的推荐。对如何利用隐式反馈数据进行个性化推荐进行了研究,提出了一种融合上下文信息和用户社交信息的隐式反馈推荐模型(Implicit Feedback Recommendation Model Fusing Context-aware and Social Network Process,IFCSP)。首先从数据集中提取与用户兴趣相关的上下文信息的属性集合,并以此作为分裂属性,使用决策树分类算法对“用户-产品-上下文”集合进行分类,从而将历史选择集合分组。对于要推荐的用户,根据其选择产品时的上下文信息,匹配最相似的分组,再使用基于隐式反馈的推荐模型(Implicit Feedback Recommendation Model,IFRM)预测用户对未选择产品的偏好,并结合用户的社交信息,进而对用户进行产品推荐。实验表明,该模型在平均正确率均值(MAP)和平均百分百排序(MPR)评价指标上均优于其他4种算法,可以显著提高系统的预测和推荐质量。  相似文献   

16.
为了提升社交网络个性化推荐能力,结合用户行为分布进行个性化推荐设计,文中提出基于用户行为特征挖掘的个性化推荐算法,构建社交网络的用户行为信息特征挖掘模型,采用显著数据分块检测方法对社交网络用户特征的行为信息进行融合处理,提取反映用户偏好的语义信息特征量。从情感、关键词和结构等方面根据用户行为特征组,结合模糊信息感知方法进行社交网络个性化推荐过程中的信息融合处理,在关联规则约束控制下,构建社交网络用户偏好特征的混合推荐模型,实现用户偏好特征挖掘,根据语义分布和用户的行为偏好实现社交网络的个性化信息推荐。仿真结果表明,采用所提方法进行社交网络个性化推荐的特征分辨能力较好,对用户行为特征的准确识别能力较强,提高了社交网络推荐输出的准确性。  相似文献   

17.
针对大规模社交网络应用中检索结果过于庞大复杂的问题,将个性化推荐与可视化相结合,用于在大量数据中找到用户感兴趣的信息。在开拓网络缩放算法的基础上,提出关键信息显示算法,能够区别显示社交网络关系图中用户相对重要的信息和次要信息,增强关联度较高数据的显示效果。将带权值的力导向布局算法应用于用户关系聚类中,通过在二维显示空间中合理安排节点布局,达到减少用户认知负担和个性化推荐的目的。设计并实现个性化推荐的可视化工具HRVis,在Movielens数据集上进行测试,结果表明,HRVis能够强调显示具有良好社会关系的重要用户以及与用户相似的关联用户,获得较好的可视推荐效果。  相似文献   

18.
能量消耗是设计无线传感器网络时需要考虑的主要因素。已有的研究大都利用分簇的思想实现网络能耗的节省与均衡,但这些方法存在簇首个数不稳定及分布不均等缺点,从而影响了整个网络的生存时间。给出一种优化的基于博弈论的分簇路由协议。该算法根据最优簇头数来对区域进行划分,在每个区域内采用博弈的方式博弈出一个簇头。同时,为了均衡整个网络的能耗、延长网络生命期,还引入了概率归零机制和区域轮转机制。最后,通过仿真实验验证了算法的优越性。  相似文献   

19.
为了提高船舶人员疏散效率,针对船舶火灾情况下多出口房间的人员疏散,提出了结合博弈论和社会力模型的疏散优化模型.模型考虑了人员之间的相互作用、人员到出口的距离和出口大小对人员选择出口的影响,用博弈理论得出多出口条件下人员个体的最优决策路线,并对社会力模型中人员动力学进行修正,作为新模型中人员运动的动力学基础.用新模型对多出口无障碍房间进行人员疏散仿真,结果显示,上述模型可以仿真出人员在多出口房间中对出口的优化选择,并能改善基础社会力模型中存在的不足.仿真结果表明,上述模型能有效缩短人员逃离房间的时间,并能模拟多出口条件下人员疏散的场景,为规划和管理多出口房间的疏散提供参考.  相似文献   

20.
一种基于网络书签的个性化信息推荐方法   总被引:1,自引:0,他引:1  
针对目前Internet上信息的爆炸式增长,提出了一种基于Web挖掘的个性化信息推荐方法,介绍了个性化推荐的流程和实现模型,并借鉴复杂网络中的社团结构划分方法,提出了基于网络书签的个性化信息推荐方法,分析了社团内基于协作过滤和社团间基于"信息桥"的个性化信息推荐,并通过实验验证了此方法在个性化信息推荐中是有效的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号