共查询到20条相似文献,搜索用时 46 毫秒
2.
3.
针对移动社会网络(MSN)的好友推荐问题,提出了一种基于多维相似度的好友推荐方法。该方法隶属于基于内容的好友推荐,但与现有方法相比,不再局限于单一维度的匹配信息,而是从空间、时间和兴趣三个维度出发,判断用户在各个维度上的相似度,最终通过“差异距离”进行综合评判,向目标用户推荐与之在地理位置、在线时间和兴趣爱好上更具一致性的其他用户成为其好友。由实验结果表明,该方法应用于移动社会网络中的好友推荐服务时,其推荐结果查准率接近80%,查准效率接近60%,性能远高于只基于单一维度的好友推荐方法;同时,通过对三维权重值的调整,该方法可应用于多种特性的移动社会网络中。 相似文献
4.
链路预测是复杂网络的一个重要研究方向。基于节点结构相似性进行链路预测是目前常用的方法。真实网络中存在大量的局部群落结构;针对不同的网络结构构建算法是链路预测的核心问题。利用社交网络好友推荐策略;中介人倾向于将自己更熟悉的人介绍给目标用户;提出了一种节点相似性度量指标。该指标结合局部特征描述并有效区分了用户节点之间影响力的不同;更适用于一类特定的局部群落结构。依据该指标提出的加权好友推荐模型链路预测算法在12个数据集上的实验结果表明;该算法在AUC和Precision两个评价标准上具有明显优势。 相似文献
5.
6.
社会网络服务(SNS)用户的人脉关系研究大多采用图论的知识,对社会网络关系图的结点和边进行探讨,而没有考虑到用户自身的偏好.因此提出一种基于用户偏好的二级人脉推荐方法.利用最小均方误差(LMS)算法,把用户偏好合理地转化为用户偏好特征向量,用相似度度量方法来计算用户之间的相似度,以确定与用户偏好最相近的用户集,并完成用户的二级好友推荐.实验结果表明,该算法的好友推荐准确度较高. 相似文献
7.
社交网络用户的指数型增长,导致用户在网络中难以找到适合自己的好友.提出一种基于多目标检测算法SSD和时序模型的微博好友推荐算法BSBT-FR,首先利用SSD对搜集到的用户图像进行信息提取,再利用时序模型在时间维度上对提取到的信息做进一步处理,然后利用JS散度公式计算用户间的相似度,最后与基于用户个人信息得出的相似度进行... 相似文献
8.
随着Facebook、Twitter、微博等社交网站的迅速普及,好友推荐系统逐渐成为各大社交网站的重要组成部分。好友推荐系统通过主动为用户推荐新的潜在好友来有效地扩大用户的社交圈规模并改善用户的社交体验,因而受到了广泛关注。然而,如何针对用户的个性化需求,为用户推荐真正意义上的好友,一直是个性化好友推荐的难点之一。对此,提出一种基于用户潜在特征的社交网络好友推荐方法(SNFRLF)。首先,通过隐语义模型挖掘用户的潜在属性特征;然后,通过用户的潜在特征计算用户间的相似度;最后,将计算得到的相似度引入到随机游走模型中以获得好友推荐列表。实验结果表明,文中所提好友推荐方法较已有的好友推荐方法在性能上有显著提升。 相似文献
9.
个性化的好友推荐是促进社交网络服务不断提高的重要途径,在大规模的社交网络环境中,准确地为用户推荐兴趣主题相似的好友能够使得用户的粘性更强,然而海量数据的稀疏性使得现有的大多数社交网络都不能够准确根据用户间兴趣的相似性进行好友推荐。为此,提出一种面向用户兴趣主题的个性化好友推荐方法(ITOR)。该方法首先采用k-core分析法提取用户的兴趣主题,在拥有相似兴趣主题的基础上结合用户属性信息,通过先验概率计算出有相同属性信息的用户成为好友的概率,进一步强化推荐结果的准确性和满意度。最后,通过爬取2015年9月份发布的新浪微博数据进行实验分析,验证了本推荐方法的有效性。 相似文献
10.
社交网络经常通过掌握的用户信息来对其进行好友推荐。这种好友推荐带来了技术挑战,现有的好友推荐技术并不能有效解决该问题。为了应对这种技术挑战,拟提出基于分类属性的好友推荐算法。通过机器学习的手段,分析出不同类型的属性对用户行为的贡献度不同,将其进行分类处理。基于该分类,提出的算法可以在掌握用户基本资料以及近期行为的基础上,搜索出与之相关性更强的好友或能够引发其兴趣点的商品,用来快速、准确、全面地得到用户与其好友之间亲疏程度排序及分类的结果。实验结果证明了所提出方法的有效性及高效率。 相似文献
11.
12.
针对社会网络中新关系出现的预测,提出一种基于自动学习机的社会网络链路预测算法.将自动学习机与三元组转化相结合,将不同类型三元组的转化作为预测的重要依据并构造学习函数,提出六种三元组内节点相似性指标.实验结果表明,该算法所提出的六个预测指标的预测准确度和稳定性要好于六种常用的链路预测指标,对于社会网络分析具有实际应用价值... 相似文献
13.
推荐是促进诸如社交网络等应用活跃度的重要模式,但 庞大 的节点规模以及复杂的节点间关系给社交网络的推荐问题带来了挑战。随机游走是一种能够有效解决这类推荐问题的策略,但传统的随机游走算法没有充分考虑相邻节点间影响力的差异。提出一种基于FP-Growth的图上随机游走推荐方法,其基于社交网络的图结构,引入FP-Growth算法来挖掘相邻节点之间的频繁度,在此基础上构造转移概率矩阵来进行随机游走计算,最后得到好友重要程度排名并做出推荐。该方法既保留了随机游走方法能有效缓解数据稀疏性等特性,又权衡了不同节点连接关系的差异性。实验结果表明,提出的方法比传统随机游走算法的推荐性能更佳。 相似文献
14.
随着以微博为代表的在线社交网站的发展,微博用户之间形成了复杂的社会网络。针对微博社会网络,研究了影响微博用户之间关系形成的各种因素,提出了基于链路预测的微博用户关系分析模型。首先分析了网络结构特征在微博社会网络中的作用,同时针对微博社会网络的特点,引入微博属性特征,构造基于随机森林的链路预测模型,并将模型应用于新浪微博用户数据集,进行微博用户关系的训练预测,通过比较引入微博属性特征前后的预测性能以及特征的重要性分布,分析了各类特征对微博用户关系形成的影响,揭示了除传统的网络结构特征外,微博属性特征对微博用户关系的形成具有重要的影响力。 相似文献
15.
16.
在社会媒体中,用户的状态信息实时地更新,用户之间的链接结构也不断改变,这给网络的链接预测提出了严峻的挑战。传统的链接预测方法针对某一特定情景,在非预定情景中效果往往表现不佳。针对单一网路连接预测算法的不足,提出一种基于Skyline查询的社会网络链接预测方法。该算法综合运用多种网络链接预测算法,将其预测值作为被预测链接的属性向量,并将Skyline点作为链接预测的结果返回给用户。实验表明,基于Skyline查询的链接预测方法其准确性明显高于相关链接预测研究的准确性,可应用于实际的社会媒体链接预测和推荐。 相似文献
17.
社会媒体网络中不仅包含了用户、文本、图片和视频等多种模态的数据,还包含了反映不同模态数据之间交互的群体特征。为了更好地描述社会媒体网络,从而为上层应用提供更好的服务,提出了一种基于深度神经网络的社会媒体网络模型。该模型采用深度神经网络对单个模态的数据进行学习,从而得到任意一个模态数据的潜在特征表示方法。对于两种不同模态的数据,利用具有高斯分布的先验矩阵与两个模态数据的后验分布建立反映这两个模态数据间群体特征的生成模型。实验结果表明,提出的模型在网络结构的链接分析中具有更好的预测效果,能有效地描述社会媒体网络的整体特征。 相似文献
18.
蛋白质间的相互作用预测问题本质上是复杂网络的链接预测问题。到目前为止,已经有很多方法用于链接预测,这些方法要么只考虑拓扑信息,要么只考虑蛋白质相互作用网络内部的交互信息,但是仅考虑一种信息来预测蛋白质的交互信息是远远不够的。因此提出了一种新方法:将蛋白质相互作用网络看作是一个有权图,根据网络中两节点的拓扑结构和属性信息,分别计算它们的拓扑相似度和属性相似度来预测它们之间是否存在链接关系。在两种相似度平衡方面,考虑基于空间映射的方法,将它们独立地映射到另一空间,并且使它们分别映射的空间尽量相近,从而使得拓扑信息、属性信息有机融合。实验结果表明,提出的算法具有较好的准确率和良好的生物统计特性。 相似文献
19.
《Information & Management》2020,57(7):103246
In recent years, a new kind of fundraising mode known as crowdfunding has gradually emerged. Because of the rapid spread of the internet, people can offer their creative ideas on a fundraising platform and attract mass backers to invest in their projects. Crowdfunding not only helps users to realize their dreams but also allows companies to carry out test marketing. Although crowdfunding brings huge opportunities, the success rate of fundraising plans remains low. In this study, we therefore propose a phase-based backer recommendation mechanism, which integrates information from crowdfunding and social networking platforms by analyzing the factors of social relationships, user preferences, and economic backgrounds, to help project creators to reach their fundraising goals at each stage. Our experimental results show that the proposed mechanism is effective in identifying appropriate backers with respect to the status of the project and significantly improves the success rates of crowdfunding. The proposed mechanism can provide greater business value and more opportunities to crowdfunding platforms and contribute to more successful fundraising plans. 相似文献
20.
针对传统推荐算法存在数据稀疏影响推荐效果的问题,考虑到社交网络中的链路预测能够综合考虑用户节点之间的拓扑结构,以及好友关系能反映用户的兴趣爱好,提出了一种融合好友关系和标签信息的推荐算法。首先,借助网络资源分配算法对社交网络的结构信息进行特征提取;然后,利用TF-IDF构建合理的社会化标签模型;最后,利用线性模型融合两方面的信息,从而实现推荐。在Last.fm和Delicious数据集上的实验表明,与传统算法相比,所提算法在推荐的召回率和准确率指标上有显著提高。 相似文献