首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
采用柠檬酸络合法制得不同Ni含量的Ni/MgO催化剂,然后将其应用到气相沉积(CVD)过程中制备磁性碳纳米管(CNTs)。碳管在生长过程中原位包裹磁性Ni金属氧化物颗粒进入管内,从而一步制得了磁性CNTs。将制得的磁性CNTs采用透射电子显微镜、电子扫描电镜、X射线衍射仪、红外光谱仪、低温N2吸附仪和振动样品磁强计等手段进行表征。结果表明:通过一步法可以成功地原位包裹Ni制得CNTs,且所得CNTs具有较强磁性,碳管表面引入功能化基团和具有较大的比表面积。  相似文献   

2.
采用直接沉淀法制备出粒径为10nm以下的二氧化锡(SnO2)颗粒,将其作为前躯体采用CVD法原位生长碳纳米管,通过XRD、SEM、TEM等方法观察了该复合物的微观结构,对其生长机理做出了合理的推断。  相似文献   

3.
李燕  李梦轲  王成伟  力虎林 《功能材料》2003,34(5):538-539,542
采用低压化学气相沉积(CVD)技术在MgO载体中的Fe、Co等纳米催化颗粒上制备碳纳米管(CNTs),用高分辨透射电子显微镜(HRTEM)及喇曼光谱仪(Raman)对生长的CNTs结构特性进行了分析研究,结果表明制备的样品中虽含多壁碳纳米管,但单壁碳纳米管(SWNTs)居多,直径约为0.6~2nm.分布均匀,且既包含金属型管,也包含半导体型管。低压MgO载体CVD制备技术,大大增加了等量Fe、Co等催化反应颗粒的比表面积和反应活性,制备的单壁管产额大、成本低、CNTs更易于提纯。  相似文献   

4.
用CVD法制备碳纳米管,将碳纳米管超声分散在硫酸铜水溶液中,经过脱水、氢还原,制得碳纳米管-铜复合粉体。用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射(XRD)对样品进行了表征。结果表明,碳纳米管在复合粉体中分散均匀,一些碳纳米管与纳米铜粒子结合在一起或被铜包覆。  相似文献   

5.
纳米Ni粒子/PTFE复合磁性膜的制备及表征   总被引:1,自引:0,他引:1  
采用双向膜相扩散控制原位化学沉积方法,在聚四氟乙烯(PTFE)膜孔道中及膜面上原位化学沉积、生长磁性纳米Ni粒子,制得纳米Ni粒子/聚合物磁性复合膜.探讨了制备条件对复合膜磁性能的影响,并用XRD和SEM等手段对磁性复合膜的结构、组成进行了表征.结果表明,复合膜膜孔中及膜表面上均有纳米级Ni粒子生成,且膜孔中的Ni粒子对复合膜磁性能具有显著影响.  相似文献   

6.
气体种类对CVD法制备碳纳米管的影响研究   总被引:2,自引:0,他引:2  
以甲烷(CH4)和丙烷(C3H6)为碳源气,以纳米级NiO/SiO2气凝胶为催化剂,采用化学气相沉积法(CVD),在合适的工艺条件下,制备出碳纳米管.通过XRD、TEM、BET吸附等手段对制得的碳纳米管进行了表征,考察气体种类对碳纳米管的影响.结果表明:采用两种碳源气制备的碳纳米管,其形貌和结构均有所不同.由CH4制备的碳纳米管长径比大,管壁光滑,形貌规整;而由C3H6制备的碳纳米管,产物中有少量无定形物,且管壁不光滑,有折点出现.  相似文献   

7.
碳纳米管优异的力学、热学和电学性质使其成为高性能复合材料的新型增强体,但难以分散,限制了其进一步应用.CVD法原位生长碳纳米管可有效解决碳纳米管在复合材料中的分散问题,是制备碳纳米管增强复合材料的理想方法.综合分析了国内外原位生长碳纳米管增强复合材料的研究状况,指出了存在的问题及以后的发展趋势.  相似文献   

8.
采用化学气相沉积(CVD)方法在经表面活性剂处理过的Si(100)衬底上原位合成了C/SnO2纳米复合结构。利用扫描电子显微镜(SEM)、X射线能量色散谱(EDS)、透射电子显微镜(TEM)等分析仪器分别对所制备样品的形貌、成分及微结构进行表征。研究发现:制备产物为非晶态碳纳米管复合物。该碳纳米管复合物呈现出管芯复合结构,成分为碳纳米管包覆的结晶良好的SnO2纳米线,且其生长方向沿(200)晶面。并在此基础上分析讨论了其生长机理,推测这种C/SnO2纳米管芯复合结构的生长是同步进行的,同时表面活性剂的碳化对形成碳纳米管有着重要作用。  相似文献   

9.
磁性碳化硅功能陶瓷的制备   总被引:1,自引:0,他引:1  
陈志彦  王军  李效东 《功能材料》2005,36(6):846-848
采用低分子量的聚硅烷(LPS)与二茂铁合成聚铁碳硅烷(PFCS),后者经高温烧成可制得磁性碳化硅陶瓷,XRD分析表明碳化硅陶瓷具有磁性的原因是由于生成了Fe3Si。铁能够促进β-SiC的形成和生长。  相似文献   

10.
本文系统地讨论了化学气相催化法制备碳纳米管的工艺过程。讨论了化学气相催化法原位制备碳纳米管器件的技术 ,即先制备电极和催化剂结构 ,然后在电极上原位生长碳纳米管。与目前通常采用的先制备碳纳米管 ,然后超声分离、沉积 ,再光刻、蒸发制备电极的方法相比 ,该方法可以减少后处理工艺对碳纳米管结构带来的损伤 ,具有潜在的优势  相似文献   

11.
Carbon nanotubes (CNTs) encapsulating Fe nanowires were prepared by the chemical vapor deposition (CVD) method using ferrocene as a precursor. The influence of the addition of Pt to an Fe catalyst, which is required for growing CNTs by CVD, on the magnetic properties of the resulting CNTs was examined from the viewpoint of enhancing coercivity. Our results showed that the addition of a Pt layer on the Fe catalyst deposited on a substrate increased the coercivity of the Fe-filled CNT. This increase is due to changes in the easy magnetization axis of the Fe nanowires in the CNTs. This result indicates that the magnetic properties of the Fe-filled CNTs can be tuned by the controlling the growth conditions, which is suitable for applications in areas such as magnetic recording media and medicine.  相似文献   

12.
This paper presents direct growth of horizontally-aligned carbon nanotubes (CNTs) between two predefined various inter-spacing up to tens of microns of electrodes (pads) and its use as CNT field-effect transistors (CNT-FETs). Using the conventional photolithography technique followed by thin film evaporation and lift off, the catalytic electrodes (pads) were prepared, consisting of Pt, Al and Fe triple layers on SiO2/Si substrate. The grown CNTs were horizontally-aligned across the catalytic electrodes on the modified gold image furnace hot stage (thermal CVD) at 800 degrees C by using an alcohol vapor as the carbon source. Scanning and transmission electron microcopies (SEM/TEM) were used to observe the structure, growth direction and density of CNTs, while Raman spectrum analysis was used to indicate the degree of amorphous impurity and diameter of CNTs. Both single- and multi-wall CNTs with diameters of 1.1-2.2 nm were obtained and the CNT density was controlled by thickness of Fe catalytic layer. Following horizontally-aligned growth of CNTs, the electrical properties of back-gate CNT-FETs were measured and showd p-type conduction behaviors of FET.  相似文献   

13.
Carbon nanotube (CNT) reinforced SiCf/SiC composite was prepared by in situ chemical vapor deposition (CVD) growth of CNTs on SiC fibers then following polymer impregnation pyrolysis (PIP) process. The nature of CNTs and the microstructure of the as prepared CNT-SiCf/SiC composite were investigated. The mechanical properties of the as prepared CNT-SiCf/SiC composite were measured. The results reveal that the in situ CVD growth of CNTs on SiC fibers remarkably promotes the mechanical properties of SiCf/SiC composite. The secondly pull-out of CNTs from matrix during the pull-out of the SiC fibers from matrix consumes the deformation energies, resulting in promotion of the mechanical properties for composite.  相似文献   

14.
定向生长的多壁碳纳米管2~18GHz复介电常数与复磁导率谱   总被引:5,自引:0,他引:5  
研究了定向生长的多壁碳纳米管2~18GHz的复介电常数与复磁导率谱.定向生长的碳纳米管的介电常数要小于采用普通化学气相沉积法制备的碳纳米管,而磁导率大于采用普通化学气相沉积法制备的碳纳米管.透射电镜观察发现定向生长的碳纳米管中腔内规则分布着纳米Fe颗粒,同时也有部分Fe颗粒被碳层片所包覆,沉积在碳纳米管的外表面上. Fe颗粒的存在可以解释定向生长的碳纳米管所具有的较高的磁导率.在定向生长的碳纳米管制备过程中,通过调节催化剂进给数量和速度可以调节Fe颗粒在碳纳米管中的分布,这为碳纳米管的电磁性能的调控提供了一种新的途径.  相似文献   

15.
The goal of this work is to study the effect of high magnetic pulses on electrical property of carbon nanotube–polypyrrole (CNT–PPy) composites with different CNT concentrations. CNT–PPy composites are produced in fractions of 1, 5 and 9 wt%. During the polymerization process, the CNTs are homogeneously dispersed throughout the polymer matrix in an ultrasonic bath. Nanocomposite rods are prepared. After exposure to 30 magnetic pulses, the resistivity of the rods is measured. The surface conductivity of thin tablets of composites is studied by 4-probe technique. The magnitude of the pulsed magnetic field is 10 Tesla with time duration of 1.5 ms. The results show that after applying 30 magnetic pulses, the electrical resistivity of the composites decreases depending on the concentration of CNTs in the composites. The orientation of CNTs is probed by atomic force microscopy (AFM) technique. AFM images approved alignment of CNT–polymer fibres in the magnetic field. We found that the enhancement in the electrical properties of CNT–PPy composites is due to rearrangement and alignment of CNTs in a high magnetic field. The stability of nano-composites is studied by Fourier transform infrared spectroscopy.  相似文献   

16.
In present work, the effects of hydrogen and oxygen plasma treatments on the structural properties of carbon nanotubes (CNTs) synthesized by catalytic CVD (Chemical Vapor Deposition) have been systematically investigated. Field emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HRTEM), and Raman spectroscopy were used to characterize the microstructural changes of the CNTs. The oxygen plasma treatment resulted in that the nanoparticles were appeared at the surface of CNTs. At high r.f. power (300 Watt), the microstructure of CNT was changed from nanotube type to nano particles. Long plasma treatment time changed the CNT morphology dramatically. For hydrogen plasma, however, there was no change in microstructure of CNT From the Raman analysis, the crystallinity of CNT was deteriorated by the plasma treatment, regardless of plasma power, treatment time, and gas types. The CNTs treated in oxygen plasma for 90 min showed excellent dispersion properties in aqueous solution.  相似文献   

17.
Carbon nanotube/silver (CNT/Ag) nanocomposites include CNT volume fraction up to 10?vol.% were prepared by chemical reduction in solution followed by spark plasma sintering. Multiwalled CNTs underwent surface modifications by acid treatments, the Fourier transform infrared spectroscopy data indicated several functional groups loaded on the CNT surface by acid functionalisation. The acid-treated CNTs were sensitised and activated. Silver was deposited on the surface of the activated CNTs by chemical reduction of alkaline silver nitrate solution at room temperature. The microstructures of the prepared CNT/Ag nanocomposite powders were investigated by high-resolution scanning electron microscopy (HRSEM), transmission electron microscopy and X-ray powder diffraction analysis. The results indicated that the produced CNT/Ag nanocomposite powders have coated type morphology. The produced CNT/Ag nanocomposite powders were sintered by spark plasma sintering. It was observed from the microstructure investigations of the sintered materials by HRSEM that the CNTs were distributed in the silver matrix with good homogeneity. The hardness and the tensile properties of the produced CNT/Ag nanocomposites were measured. By increasing the volume fraction of CNTs in the silver matrix, the hardness values increased but the elongation values of the prepared CNT/Ag nanocomposites decreased. In addition, the tensile strength was increased by increasing the CNTs volume fraction up to 7.5?vol.%, but the sample composed of 10?vol.% CNT/Ag was fractured before yielding.  相似文献   

18.
Manganese oxide/carbon nanotube (CNT) composite films on graphite were prepared by growing CNTs on the substrate using chemical vapor deposition (CVD), followed by immersion in an aqueous solution of potassium permanganate. The CVD growth created favorable conditions for deposition of the oxide on the electrode, and an aligned porous structure of the composite films, which originated from the CNT growth, could be managed. Electrochemical behaviors of the CNT and the composite films for supercapacitors were studied in 1 M Na2SO4 solution. While the oxide deposition in the CNT films was identified as contributing to capacitance enhancement, it was also found that a mild heat treatment could improve performance of the composite films.  相似文献   

19.
Multi-walled carbon nanotubes (MWCNTs) with > 95% purity were synthesized over a Fe-Co/CaCO3 catalyst using chemical vapour deposition (CVD). Both the CNT yield and the outer diameters increased with time on line in the presence of acetylene. More significantly, the tubes were reduced in length and became stub-like with time. TEM analysis revealed that the CNTs commenced shortening after 2 h of reaction time. Reagent residues (e.g., Ca, CaO, OH/COOH groups and Fe-Co oxides) were found not to influence the CNT bond breaking reaction. CNT growth over Fe-Co supported on silica or CaCO3-Ca3(PO4)2 gave similar results. Further, MWCNTs produced by a floating catalyst method, carbon helices produced from Fe-Co-In/A2O3, and N doped CNTs also revealed tube shortening as a function of reaction time under a flow of acetylene. It is thus apparent that MWCNTs can readily be shortened by the facile procedure of depositing carbon from excess C2H2 on the outer walls of CNTs.  相似文献   

20.
Continuous carbon nanotubes (CNT) fibers were directly spun from a vertically aligned CNT forest grown by a plasma-enhanced chemical vapor deposition (PECVD) process. The correlation of the CNT structure with Fe catalyst coarsening, reaction time, and the CNTs bundling phenomenon was investigated. We controlled the diameters and walls of the CNTs and minimized the amorphous carbon deposition on the CNTs for favorable bundling and spinning of the CNT fibers. The CNT fibers were fabricated with an as-grown vertically aligned CNT forest by a PECVD process using nanocatalyst an Al2O3 buffer layer, followed by a dry spinning process. Well-aligned CNT fibers were successfully manufactured using a dry spinning process and a surface tension-based densification process by ethanol. The mechanical properties were characterized for the CNT fibers spun from different lengths of a vertically aligned CNT forest. Highly oriented CNT fibers from the dry spinning process were characterized with high strength, high modulus, and high electrical as well as thermal conductivities for possible application as ultralight, highly strong structural materials. Examples of structural materials include space elevator cables, artificial muscle, and armor material, while multifunctional materials include E-textile, touch panels, biosensors, and super capacitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号