首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To elucidate the mechanisms involved in monocyte/macrophage adhesion and fusion to form foreign body giant cells on molecularly engineered surfaces, we have utilized our in vitro culture system to examine surface chemistry effects, cytoskeletal reorganization and adhesive structure development, and cell receptor-ligand interactions in in vitro foreign body giant cell formation. Utilizing silane-modified surfaces, monocyte/macrophage adhesion was essentially unaffected by surface chemistry, however the density of foreign body giant cells (FBGCs) was correlated with surface carbon content. An exception to the surface-independent macrophage adhesion were the alkyl-silane modified surfaces which exhibited reduced adhesion and FBGC formation. Utilizing confocal immunofluorescent techniques, cytoskeletal reorganization and adhesive structure development in in vitro FBGC formation was studied. Podosomes were identified as the adhesive structures in macrophages and FBGCs based on the presence of characteristic cytoplasmic proteins and F-actin at the ventral cell surface. Focal adhesion kinase (FAK) and focal adhesions were not identified as the adhesive structures in macrophages and FBGCs. In studying the effect of preadsorbed proteins on FBGC formation, fibronectin or vitronectin do not play major roles in initial monocyte/macrophage adhesion, whereas polystyrene surfaces modified with RGD exhibited significant FBGC formation. These studies identify the potential importance of surface chemistry-dependent conformational alterations which may occur in proteins adsorbed to surfaces and their potential involvement in receptor-ligand interactions. Significantly, preadsorption of α2-macroglobulin facilitated macrophage fusion and FBGC formation readily on the RGD surface in the absence of any additional serum proteins. As α2-macroglobulin receptors are not found on blood monocytes but are expressed only with macrophage development, these results point to a potential interaction between adsorbed α2-macroglobulin and its receptors on macrophages during macrophage development and fusion. These studies identify important surface independent and dependent effects in foreign body reaction development that may be important in the identification of biological design criteria for molecularly engineered surfaces and tissue engineered devices. © 1999 Kluwer Academic Publishers  相似文献   

2.
Gly-Arg-Gly-Asp-Ser-Pro (GRGDSP) peptide has frequently been used in the biomedical materials to enhance adhesion and proliferation of cells. In this work, we modified the nontoxic biodegradable waterborne polyurethanes (WBPU) with GRGDSP peptide and fabricated 3-D porous scaffold with the modified WBPU to investigate the effect of the immobilized GRGDSP peptide on human umbilical vein endothelial cells (HUVECs) adhesion and proliferation. A facile and reliable approach was first developed to quantitative grafting of GRGDSP onto the WBPU molecular backbone using ethylene glycol diglycidyl ether (EX810) as a connector. Then 3-D porous WBPU scaffolds with various GRGDSP content were fabricated by freeze-drying the emulsion. In both of the HUVECs adhesion and proliferation tests, enhanced cell performance was observed on the GRGDSP grafted scaffolds compared with the unmodified scaffolds and the tissue culture plate (TCP). The adhesion rate and proliferation rate increased with the increase of GRGDSP content in the scaffold and reached a maximum with peptide concentration of 0.85 μmol/g based on the weight of the polyurethanes. These results illustrate the necessity of the effective control of the GRGDSP content in the modified WBPU and support the potential utility of these 3-D porous modified WBPU scaffolds in the soft tissue engineering to guide cell adhesion, proliferation and tissue regeneration.  相似文献   

3.
The surfaces of aliphatic polyurethane films, which were synthesized by 1,6 hexamethylene diisocyanate, poly(tetramethylene glycol) and 1,4 butanediol, were modified by grafting different chain length of fluorocarbon oligomers. The fluorocarbon oligomers on polyurethane surfaces were terminated with trifluorocarbon or carboxylic acid functionality. The alkyl groups were also grafted onto polyurethane surfaces for comparison. The surface characterization and platelet-contacting property were studied using electron spectroscopy for chemical analysis (ESCA), static contact angle analysis and in vitro platelet adhesion experiments. The effects of fluorocarbon oligomers and their terminal functionalities are discussed. The ESCA results demonstrate the fluorocarbon enrichment at the outmost layer in fluorocarbon oligomer grafted polyurethanes. The fluorocarbon content at the surface increases with increasing the chain length of fluorocarbon oligomers. The fluorocarbon oligomer grafted polyurethanes exhibit highly hydrophobic surfaces, while alkyl groups grafted polyurethanes show relatively hydrophobic surfaces compared with the untreated polyurethane. The in vitro platelet adhesion experiments indicated that the fluorocarbon oligomer and carboxylic acid functionality significantly reduced the number and the degree of activation of the adherent platelets.  相似文献   

4.
To improve the performance of small-diamater vascular grafts, endothelization of biomaterials surfaces and tissue engineering are more promising strategies to fabricate small-diamater vascular grafts. In this study, a Gly-Arg-Gly-Asp-Ser-Pro (GRGDSP) peptide was grafted on the surfaces of poly(carbonate urethane)s (PCUs), with photoactive 4-benzoylbenzoic acid (BBA) by UV irradiation. The photoactive peptides (BBM-GRGDSP) were synthesized with classical active ester of peptide synthesis. The modified surfaces of PCU with the photoactive RGD peptides were characterized by water contact angle measurement and X-ray Photoelectron Spectroscopy (XPS), which results suggested that the peptides were successfully grafted on the PCU surfaces. The effect of these modified surfaces on endothelial cells (ECs) adhesion and proliferation was examined over 72 h. PCU surfaces coupled with the synthetic photoactive RGD peptides, as characterized with phase contrast microscope and the metabolic activity (MTT) assay enhanced ECs proliferation and spreading with increasing concentration of RGD peptides grafted on their surfaces. Increased retention of ECs was also observed on the polymers surfaces under flow shear stress conditions. The results demonstrated that GRGDSP peptides grafted on the surfaces of polymers with photoactive 4-benzoylbenzoic acids could be an efficient method of fabrication for artificial small-diamater blood vessels. The modified polymer is expected to be used for small-diamater vascular grafts and functional tissue engineered blood vessels to improve ECs adhesion and retention on the polymer surfaces under flow shear stress conditions.  相似文献   

5.
应用等离子辅助化学接枝方法在磷灰石-硅灰石(AW)生物活性玻璃的表面接枝精氨酸-甘氨酸-天冬氨酸(RGD)多肽。采用模拟体液(SBF)浸泡方法研究了AW表面接枝RGD基团对材料体外矿化特性的影响。SEM和EDS检测结果表明,RGD多肽的引入有利于羟基磷灰石(HA)的沉积,能够增强RGD-AW复合材料的体外矿化能力,HA形貌为蠕虫状。材料MG-63细胞共培养实验以及材料新西兰成年大白兔体内植入实验的结果表明,表面化学接枝RGD多肽的RGD-AW复合材料能够显著地促进类成骨细胞的黏附和铺展,并且在2周、4周和8周时均能够加速新骨的生成及骨组织结构和功能的重建。  相似文献   

6.
The incorporation of zinc into the hydroxyapatite structure (ZnHA) has been proposed to stimulate osteoblast proliferation and differentiation. Another approach to improve cell adhesion and hydroxyapatite (HA) performance is coating HA with adhesive proteins or peptides such as RGD (arginine–glycine–aspartic acid). The present study investigated the adhesion of murine osteoblastic cells to non-sintered zinc-substituted HA disks before and after the adsorption of RGD. The incorporation of zinc into the HA structure simultaneously changed the topography of disk’s surface on the nanoscale and the disk’s surface chemistry. Fluorescence microscopy analyses using RGD conjugated to a fluorescein derivative demonstrated that ZnHA adsorbed higher amounts of RGD than non-substituted HA. Zinc incorporation into HA promoted cell adhesion and spreading, but no differences in the cell density, adhesion and spreading were detected when RGD was adsorbed onto ZnHA. The pre-treatment of disks with fetal bovine serum (FBS) greatly increased the cell density and cell surface area for all RGD-free groups, overcoming the positive contribution of zinc to cell adhesion. The presence of RGD on the ZnHA surface impaired the effects of FBS pre-treatment possibly due to competition between FBS proteins and RGD for surface binding sites.  相似文献   

7.
A previously established human monocyte culture protocol was used to determine the effects of varying adsorbed proteins on monocyte/macrophage adhesion and survival on dimethyl-silane (DM) or RGD modified glass coverslips. Cells were allowed to adhere for 2 h in the absence of protein or in the presence of serum, fibrinogen (Fg), heat inactivated serum (HIS), serum supplemented with Fg or HIS with Fg. Cell adhesion and apoptosis rates were determined on days 0 (2 h), 3, 7 and 10 of culture. The presence of serum alone in the initial culture was sufficient to optimize monocyte/macrophage adhesion and survival rates. Adding Fg to serum did not increase adhesion nor decrease apoptotic rates. No protein or the addition of HIS during the initial incubation period significantly decreased monocyte/macrophage adhesion and survival on both surfaces, however, the addition of Fg to HIS restored adhesion and survival rates to those seen with in the presence of serum alone on RGD surfaces. These studies demonstrate that monocyte/macrophage adhesion and survival on biomaterial surfaces are optimized by adsorbed heat labile serum proteins while adsorbed Fg plays a surface property-dependent role.  相似文献   

8.
El-Said WA  Kim TH  Kim H  Choi JW 《Nanotechnology》2010,21(45):455501
Cell-cell and cell-extracellular matrix (ECM) adhesion are fundamental and important in the development of a cell-based chip. In this study, a novel, simple, rapid, and one-step technique was developed for the fabrication of a uniform three-dimensional mesoporous gold thin film (MPGF) onto a gold (Au) coated glass plate based on an electrochemical deposition method. Scanning electron microscopy images demonstrated that the resulting MPGF electrode had uniformly distributed pores with diameters of about 20 nm. The cyclic voltammetric behavior of [Fe(CN)(6)](4-/3-) coupled onto MPGF and Au electrodes demonstrated that the MPGF electrode had a higher electrocatalytic sensitivity and reversibility than the bare Au electrode. The Arg-Gly-Asp (RGD) sequence containing the peptide was immobilized on the MPGF and bare Au substrates. HeLa cancer cells were then cultured on the RGD peptide layer. The successful immobilization of the peptide and cells was confirmed by atomic force microscopy. The cell proliferation and viability were evaluated by cyclic voltammetry and Trypan blue dyeing assay. These results indicated that the RGD/MPGF modified electrodes showed an electrochemical sensitivity in the detection of cancer cells which is approximately three times higher, especially at low cell density, than RGD/Au electrodes. This much improved sensitivity of the MPGF modified electrode demonstrates the potential for the fabrication of a highly sensitive and low-cost cell-based chip for rapid cancer detection.  相似文献   

9.
卢玲  王迎军 《材料导报》2005,19(1):24-27
RGD(Arg-G1y-Asp)短肽序列是一种细胞粘附肽,能被细胞膜上的整合素识别,参与细胞与基质间的粘附.为改善合成生物材料缺乏细胞识别信号的缺点,可将含RGD序列肽经本体或表面修饰引入材料,使材料具有良好的细胞亲和性.综述了采用含RGD肽对各种合成生物材料进行仿生修饰的研究进展.  相似文献   

10.
Arginine-glycine-aspartic acid (RGD) dendrimer-based nanopatterns on poly(L-lactic acid) were used as bioactive substrates to evaluate the impact of the RGD local surface density on the chondrogenic induction of adult human mesenchymal stem cells.During chondrogenic commitment,active extracellular matrix (ECM) remodeling takes place,playing an instructive role in the differentiation process.Although three-dimensional environments such as pellet or micromass cultures are commonly used for in vitro chondrogenic differentiation,these cultures are rather limited with respect to their ability to interrogate cells in cell-ECM interactions.In the present study,the nanopatterns of the tunable RGD surface density were obtained as a function of the initial dendrimer concentration.The local RGD surface density was quantified through probability contour plots for the minimum interparticle distance,constructed from the corresponding atomic force microscopy images,and correlated with the cell adhesion and differentiation response.The results revealed that the local RGD surface density at the nanoscale acts as a regulator of chondrogenic commitment,and that intermediate adhesiveness of cells to the substrates favors mesenchymal cell condensation and early chondrogenic differentiation.  相似文献   

11.
Conformational changes of peptides are critically important in the control of their biological activities. Here, a quaternary ammonium group‐terminated RGD‐containing peptide (RGD‐NMe3) is designed, which may undergo reversible conformational switch upon different electrochemical potentials. Potential responsive peptide interfaces are constructed on gold substrates with RGD‐NMe3 in a tetra (ethylene glycol) background. It is demonstrated that by applying positive and negative potentials, the RGD peptide can be reversibly switched between linear and cyclic conformation, which can be used in reversible controlling of cell adhesion/migration on the interface. Furthermore, by combining microfluidics, adhesion of the cells in specific areas on the surface and subsequent directional migration of the cells can be controlled. It is believed that this straightforward potential modulation mechanism for peptide conformation control may find a wide use in design responsive peptide interfaces.  相似文献   

12.
This paper examines the effects of physical and chemical surface modifications on the biocompatibility of silicon surfaces that are relevant to implantable silicon Bio-micro-electro-mechanical systems (BioMEMS). Two types of surface modifications were explored. The first involved the deposition of nano-scale biocompatible layers of pure titanium on silicon, while the second explored the covalent attachment of the binding peptide Argenine–Glycine–Aspartic acid (RGD) for improved cell adhesion. Improvements in biocompatibility were assessed through examination of cell areas after culture, as well as the measurements of adhesion strengths, as determined by shear assay techniques. The titanium nanolayers and the RGD coating resulted in improvements in biocompatibility. Increased cell spreading areas and improved adhesion strength were obtained from short and long-term studies of Human Osteosarcoma (HOS) cells cultured on the coated surfaces. RGD functionalization resulted in the greatest improvement in cell spreading area and adhesion strength for short culture times. The effects of the titanium, while less than those of RGD for short culture times, appeared to be greater after 48 h of culture.  相似文献   

13.
为在磷灰石-硅灰石生物活性玻璃陶瓷(Apatite-Wollastonite Bioactive Glass-Ceramic, AW)表面引入能够促进细胞粘附的RGD(精氨酸-甘氨酸-天冬氨酸)多肽以提高其生物活性, 采用低温等离子法在材料的表面引入活性氨基基团, 并通过浸渍法使氨基基团与多肽发生反应。采用XRD、XPS、ATR-FTIR对AW的相组成及表面改性特性进行表征, 确认通过低温等离子法在AW表面接上氨基, RGD多肽分子与氨基反应以化学键合的形式接枝到材料表面(RGD-AW), 实现了在AW表面接枝生物大分子的改性。将改性前后的材料分别与类成骨细胞(MG63细胞)混合培养并使用荧光显微镜、SEM及MTT等测试方法对材料的细胞生物学性能进行了表征。细胞实验结果表明: 接枝RGD多肽分子的材料在细胞培养的早期阶段比AW更有利于细胞的粘附及铺展。  相似文献   

14.
A complete biological integration into the surrounding tissues (bone, gingiva) is a critical step for clinical success of a dental implant. In this work biomimetic coatings consisting either of collagen type I (for the gingiva region) and hydroxyapatite (HAP) or mineralized collagen (for the bone interface) have been developed as suitable surfaces regarding the interfaces. Additionally, using these biomimetic coatings as a matrix, adhesion peptides were bound to further increase the specificity of titanium implant surfaces. To enhance cell attachment in the gingiva region, a linear adhesion peptide developed from a laminin sequence (TWYKIAFQRNRK) was bound to collagen, whereas for the bone interface, a cyclic RGD peptide was bound to HAP and mineralized collagen using adequate anchor systems. The biological potential of these coatings deduced from cell attachment experiments with HaCaT human keratinocytes and MC3T3-E1 mouse osteoblasts showed the best results for collagen and laminin sequence coating for the gingiva region and mineralized collagen and RGD peptide coatings for regions with bone contact. Our concept opens promising approaches to improve the biological integration of dental implants.  相似文献   

15.
Immobilization of adhesive peptides interacting with cellular integrin receptors onto metallic implant surfaces represents a promising approach to improve osseointegration of implants into the surrounding tissue. In the present study, a functional dextran‐based coating system consisting of an amino titanate adhesion promoter with dendritic structure and a carboxymethyl dextran was established to bind an RGD‐containing adhesive peptide via a selective coupling methodology onto titanium surfaces. The three‐step reaction procedure was characterized by X‐ray photoelectron spectroscopy. In cell adhesion experiments it could be demonstrated that dextran coatings containing immobilized RGD promote attachment and spreading of fibroblast and pre‐osteoblastic cells compared to native as well as CMD‐coated titanium surfaces without RGD. The direct attachment of the RGD sequence to the metal surface via the amino titanate adhesion promoter did not increase pre‐osteoblastic cell spreading, whereas coupling of RGD to the polymeric carboxy­methyl dextran layer slightly enhanced spreading of the cells.  相似文献   

16.
To manipulate the cellular response to synthetic surfaces, extracellular matrix (ECM) proteins such as fibronectin (FN) and collagen are often immobilized on the surface to promote interaction between these ligands and the cell receptors. In this study we compared the biological properties of FN-decorated polyethylene terephthalate (PET) produced by two widely used immobilization techniques: adsorption and conjugation. As revealed by the micro-bicinchoninic acid (micro-BCA) assay and AFM, the modified surface topography was dependent on the immobilization methods. Adsorption method preserved the compact conformation of FN, reaching saturation when a monolayer of FN was formed. Covalent conjugation induced FN unfolding and fibrillogenesis, forming multiple layers of FN. Biological characterization by adhesion of baby hamster kidney 21 (BHK21) cells and enzyme-linked immunosorbent assay (ELISA) for active Arg-Gly-Asp (RGD) domains suggested that the difference in conformation of FN led to different bioactivities. Adsorption maintained a more active RGD domain, thereby promoting cell adhesion, whereas conjugation induced fibrillogenesis and blocked the access of RGD, consequently suppressing cell adhesion as the surface density of FN increased. This study suggests that in addition to choosing the nature of the adhesion molecule, the mode of immobilization may also significantly influence the bioactivity of the surface.  相似文献   

17.
Synthetic polymers were used to fabricate a three-dimensional (3D) porous scaffold of poly(propylene fumarate)/diethyl fumarate (PPF/DEF). PPF-based materials are good candidates for bone regeneration, because of their non-toxic, biodegradable byproducts, and excellent mechanical properties. However, they exhibit hydrophobic surface properties that have negative effects on cell adhesion. To change the surface properties of a PPF/DEF scaffold, the authors used three peptide modifications (RGD, cyclo RGD, and RGD-KRSR mixture) to the scaffold and tested the effects on MC3T3-E1 pre-osteoblast adhesion, proliferation, and differentiation. The results indicated that peptide modification (particularly the RGD-KRDR mixture) altered the hydrophobic surface properties of the PPF/DEF scaffold, and promoted cell adhesion. Thus, it was suggest that peptide modification is a useful method for changing the properties of the PPF/DEF scaffold surface and may be applicable in bone tissue engineering.  相似文献   

18.
RGD修饰钛表面对人牙龈成纤维细胞初期黏附和铺展的影响   总被引:2,自引:0,他引:2  
用羰基二咪唑(1,1'-carbonyldiimidazole,CDI)将含RGD的短肽共价连接到纯钛表面,研究接枝后的钛表面对原代培养的人牙龈成纤维细胞(human gingival fibroblasts,HGF)初期黏附和铺展的影响.结果表明,RGD修饰的纯钛表面粘附的细胞数比未修饰钛表面多,细胞铺展面积比钛表面的大,应力纤维的形成比钛表面早.RGD接枝钛表面更有利于人牙龈成纤维细胞的粘附,改善了纯钛的生物相容性.  相似文献   

19.
The use of tantalum as biomaterial for orthopedic applications is gaining considerable attention in the clinical practice because it presents an excellent chemical stability, body fluid resistance, biocompatibility, and it is more osteoconductive than titanium or cobalt-chromium alloys. Nonetheless, metallic biomaterials are commonly bioinert and may not provide fast and long-lasting interactions with surrounding tissues. The use of short cell adhesive peptides derived from the extracellular matrix has shown to improve cell adhesion and accelerate the implant’s biointegration in vivo. However, this strategy has been rarely applied to tantalum materials. In this work, we have studied two immobilization strategies (physical adsorption and covalent binding via silanization) to functionalize tantalum surfaces with a cell adhesive RGD peptide. Surfaces were used untreated or activated with either HNO3 or UV/ozone treatments. The process of biofunctionalization was characterized by means of physicochemical and biological methods. Physisorption of the RGD peptide on control and HNO3-treated tantalum surfaces significantly enhanced the attachment and spreading of osteoblast-like cells; however, no effect on cell adhesion was observed in ozone-treated samples. This effect was attributed to the inefficient binding of the peptide on these highly hydrophilic surfaces, as evidenced by contact angle measurements and X-ray photoelectron spectroscopy. In contrast, activation of tantalum with UV/ozone proved to be the most efficient method to support silanization and subsequent peptide attachment, displaying the highest values of cell adhesion. This study demonstrates that both physical adsorption and silanization are feasible methods to immobilize peptides onto tantalum-based materials, providing them with superior bioactivity.  相似文献   

20.
This paper presents the results of an experimental study of the effects of alkyl phosphonic acid/RGD complexes on cell spreading and the interfacial strength between human osteosarcoma (HOS) cells and Ti–6Al–4V surfaces. The initial stage of cell spreading is shown to be accelerated by the coatings in 9-day cell culture experiments. The adhesion between human osteosarcoma (HOS) cells and alkyl phosphonic acid/RGD-coated surfaces is also quantified by performing shear assay experiments on coated and uncoated Ti–6Al–4V specimens. These show that the interfacial shear strengths required to detach the HOS cells from the coated/uncoated specimens, increase from approx. 407 Pa (in the case of the uncoated samples) to 80 Pa in the case of the of alkyl phosphonic acid/RGD coated samples. The increase is attributed to the tethering effect of the of alkyl phosphonic acid/RGD complexes on the HOS cells. The implications of the results are then discussed for improving the wound healing and the osseointegration of biomedical implants fabricated from Ti–6Al–4V.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号