首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nonisothermal crystallization of poly(ethylene‐co‐glycidyl methacrylate) (PEGMA) and PEGMA/clay were studied by differential scanning calorimeter, at various cooling rates. Avrami model modified by Jeziorny, Ozawa mode and Liu model could successfully describe the nonisothermal crystallization process. Augis–Bennett model, Kissinger model, Takhor model, and Ziabicki model were used to evaluate the activation energy of both samples. It was found that the activation energy of PEGMA/clay nanocomposite was higher than that of neat PEGMA. Experimental results also indicated that the addition of modified clay might retard the overall nonisothermal crystallization process of PEGMA. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1335–1343, 2006  相似文献   

2.
Nonisothermal crystallization kinetics of the blends of three ethylene–butene copolymers with LDPE was studied using differential scanning calorimetry (DSC) and kinetic parameters such as the Avrami exponent and the kinetic crystallization rate (Zc) were determined. It was found that the pure components and the blends have similar Avrami exponents, indicating the same crystallization mechanism. However, the crystallization rate of the blends was greatly influenced by LDPE. The Zc of all the blends first increases with increasing LDPE content in the blends and reaches its maximum, then descends as the LDPE content further increases. The crystallization rate also depends on the short‐chain branching distribution (SCBD) of the ethylene–butene copolymers. The Zc of the pure component with a broad SCBD is smaller, but its blends have a larger crystallization rate due to losing highly branched fractions after blending with LDPE. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 123–129, 2001  相似文献   

3.
The isothermal and nonisothermal crystallization behavior of Nylon 12 was investigated using differential scanning calorimetry (DSC). An Avrami analysis was used to study the isothermal crystallization kinetics of Nylon 12, the Avrami exponent (n) determined and its relevance to crystal growth discussed and an activation energy for the process evaluated using an Arrhenius type expression. The Lauritzen and Hoffman analysis was used to examine the spherulitic growth process of the primary crystallization stage of Nylon 12. The surface‐free energy and work of chain folding were calculated using a procedure reported by Hoffmann and the work of chain folding per molecular fold (σ) and chain stiffness of Nylon 12 (q) was calculated and compared to values reported for Nylons 6,6 and 11. The Jeziorny modification of the Avrami analysis, Cazé and Chuah average Avrami parameter methods and Ozawa equation were used in an attempt to model the nonisothermal crystallization kinetics of Nylon 12. A combined Avrami and Ozawa treatment, described by Liu, was used to more accurately model the nonisothermal crystallization kinetics of Nylon 12. The activation energy for nonisothermal crystallization processes was determined using the Kissinger method for Nylon 12 and compared with values reported previously for Nylon 6,6 and Nylon 11. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

4.
PTT的非等温结晶动力学研究   总被引:3,自引:0,他引:3  
采用DSC方法对PTT在不同冷却速率下的结晶过程进行了研究,并与PET进行了对比,其结晶动力学用Mandel Kern方法来处理。结果表明,PTF相对于PET更易成核结晶,PTT半结晶时间比PET长,冷却速率对PTT的半结晶时间影响大,并且PTF的非等温结晶动力学曲线的线性较PET好,能够更好的遵循Mandel Kern方法。  相似文献   

5.
The nonisothermal crystallization kinetics of poly(ethylene terephthalate) (PET) and poly(methyl methacrylate) (PMMA) blends were studied. Four compositions of the blends [PET 25/PMMA 75, PET 50/PMMA 50, PET 75/PMMA 25, and PET 90/PMMA 10 (w/w)] were melt‐blended for 1 h in a batch reactor at 275°C. Crystallization peaks of virgin PET and the four blends were obtained at cooling rates of 1°C, 2.5°C, 5°C, 10°C, 20°C, and 30°C/min, using a differential scanning calorimeter (DSC). A modified Avrami equation was used to analyze the nonisothermal data obtained. The Avrami parameters n, which denotes the nature of the crystal growth, and Zt, which represents the rate of crystallization, were evaluated for the four blends. The crystallization half‐life (t½) and maximum crystallization (tmax) times also were evaluated. The four blends and virgin polymers were characterized using a thermogravimetric analyzer (TGA), a wide‐angle X‐ray diffraction unit (WAXD), and a scanning electron microscope (SEM). © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3565–3571, 2006  相似文献   

6.
The nonisothermal crystallization kinetics of polyoxymethylene (POM), polyoxymethylene/Na–montmorillonite (POM/Na–MMT), and polyoxymethylene/organic–montmorillonite (POM/organ–MMT) nanocomposites were investigated by differential scanning calorimetry at various cooling rates. The Avrami analysis modified by Jeziorny and a method developed by Mo were employed to describe the nonisothermal crystallization process of POM/Na–MMT and POM/organ–MMT nanocomposites. The difference in the values of the exponent n between POM and POM/montmorillonite nanocomposites suggests that the nonisothermal crystallization of POM/Na–MMT and POM/organ–MMT nanocomposites corresponds to a tridimensional growth with heterogeneous nucleation. The values of half‐time and the parameter Zc, which characterizes the kinetics of nonisothermal crystallization, show that the crystallization rate of either POM/Na–MMT or POM/organ–MMT nanocomposite is faster than that of virgin POM at a given cooling rate. The activation energies were evaluated by the Kissinger method and were 387.0, 330.3, and 328.6 kJ/mol for the nonisothermal crystallization of POM, POM/Na–MMT nanocomposite, and POM/organ–MMT nanocomposite, respectively. POM/montmorillonite nanocomposite can be as easily fabricated as the original polyoxymethylene, considering that the addition of montmorillonite, either Na–montmorillonite or organ–montmorillonite, may accelerate the overall nonisothermal crystallization process. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 2281–2289, 2001  相似文献   

7.
The quiescent nonisothermal crystallization kinetics of polypropylene resins was studied as a function of their molecular weight, Mw. Differential scanning calorimetry and polarized light optical microscopy were used to follow this kinetics. It was observed that a modified Hoffman and Lauritzen equation could describe with accuracy their nonisothermal behavior. Also it was found that the polypropylene nonisothermal growth rates, Gn, were similar to their corresponding isothermal rates, G, and also decreased with the increase in Mw. The use of a prior isothermal nucleation procedure allowed to obtain data at higher temperatures and to compare these data at higher cooling rates than the ones found in the literature. The morphology of all the samples revealed a fine and radial spherulitic texture. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 1733–1740, 1999  相似文献   

8.
Subsequent melting behavior after isothermal crystallization at different temperatures from the isotropic melt and nonisothermal crystallization kinetics and morphology of partially melting sPB were carried out by differential scanning calorimetry (DSC), polarized light microscopy (POM), respectively. Triple melting‐endothermic peaks were observed for the polymer first isothermally crystallized at temperatures ranging from 141 to 149°C, respectively, and then followed by cooling at 10°C/min to 70°C. Comparing with the nonisothermal crystallization from the isotropic melt, the nonisothermal crystallization for the partially melting sPB characterized the increased onset crystallization temperature, and the sizes of spherulites became smaller and more uniform. The Tobin, Avrami, Ozawa, and the combination of Avrami and Ozawa equations were applied to describe the kinetics of the nonisothermal process. Both of the Tobin and the Avrami crystallization rate parameters (KT and KA, respectively) were found to increase with increase in the cooling rate. The parameter F(T) for the combination of Avrami and Ozawa equations increases with increasing relative crystallinity. The Ziabicki's kinetic crytallizability index GZ for the partially melting sPB was found to be 3.14. The effective energy barrier Δ? describing the nonisothermal crystallization of partially melting sPB was evaluated by the differential isoconversional method of Friedman and was found to increase with an increase in the relative crystallinity. At the same time, Hoffman‐Lauritzen parameters (U and Kg) are evaluated and analyzed from the nonisothermal crystallization data by the combination of isoconversional approach and Hoffman‐Lauritzen theory. The Kg value obtained from DSC technique was found to be in good agreement with that obtained from POM technique. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1479–1491, 2006  相似文献   

9.
Nonisothermal crystallization of poly(N‐methyldodecano‐12‐lactam) (MPA) was investigated using DSC method at cooling rates of 2–40 K/min. With increasing cooling rate, crystallization exotherms decreased in magnitude and shifted toward lower temperatures. Subsequent heating runs (10 K/min) showed an exotherm just above Tg, which increased in magnitude with the rate of preceding cooling run, corresponding to the continuation of primary crystallization interrupted as the system crossed Tg on cooling. Kinetic evaluation by the Avrami method gave values of exponent n close to 2.0, suggesting two‐dimensional crystal growth combined with heterogeneous nucleation. The Tobin method, covering the intermediate range of relative crystallinities, provided n ? 2.20, suggesting possible partial involvement of homogeneous nucleation at later stages of nonisothermal crystallization. The crystallization rate parameter k1/n showed a linear dependency on cooling rate for both methods, the Tobin values being slightly higher. The Ozawa approach failed to provide reasonable values of the kinetic exponent m of MPA. The Augis–Bennet method was used to determine the effective activation energy of the entire nonisothermal crystallization process of MPA. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 95: 564–572, 2005  相似文献   

10.
Nonisothermal crystallization kinetics of linear bimodal–polyethylene (LBPE) and the blends of LBPE/low‐density polyethylene (LDPE) were studied using DSC at various scanning rates. The Avrami analysis modified by Jeziorny and a method developed by Mo were employed to describe the nonisothermal crystallization process of LBPE and LBPE/LDPE blends. The theory of Ozawa was also used to analyze the LBPE DSC data. Kinetic parameters such as, for example, the Avrami exponent (n), the kinetic crystallization rate constant (Zc), the crystallization peak temperature (Tp), and the half‐time of crystallization (t1/2) were determined at various scanning rates. The appearance of double melting peaks and double crystallization peaks in the heating and cooling DSC curves of LBPE/LDPE blends indicated that LBPE and LDPE could crystallize, respectively. As a result of these studies, the Zc of LBPE increases with the increase of cooling rates and the Tp of LBPE for LBPE/LDPE blends first increases with increasing LBPE content in the blends and reaches its maximum, then decreases as the LBPE content further increases. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2431–2437, 2003  相似文献   

11.
The non‐isothermal crystallization behaviors of PA56, PA66, and PA56/PA66 blends were studied by differential scanning calorimetry. The Jeziorny and Mo's methods were used to analyze their non‐isothermal crystallization kinetics. The results indicated that Mo's method was better to describe the experimental data in this work. The crystallization rate of PA56 was much slower than that of PA66. The crystallization rate of PA56/PA66 blend was speeded up significantly with the increasing PA66 content when the PA66 content was less than 30 wt %. Further increase in the PA66 content only leads to relatively less increase of the crystallization rate in the PA56/PA66 blends. Activation energies have been determined with Friedman method. The activation energy of PA56/PA66 blends is decreased and lower than that of PA56. PA66 may play a role of nucleating agent toward PA56 to make it crystallize more easily in PA56/PA66 blends. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46409.  相似文献   

12.
Poly(ethylene‐co‐octene) (PEOc) has been shown to provide a high toughening contribution to isotactic polypropylene (iPP). The theoretical modeling of flow‐induced crystallization (FIC) of blends of iPP and PEOc is not much reported in the literature. The aim of the present work is to clarify the FIC of iPP upon addition of PEOc in terms of theoretical modeling. The crystallization of iPP and PEOc blends in flow is simulated by a modified FIC model based on the conformation tensor theory. Two kinds of flow fields, shear flow and elongational flow, are considered in the prediction to analyze the influence of flow field on the crystallization kinetics of the polymer. The simulation results show that the elongation flow is much more effective than shear flow in reducing the dimensionless induction time of polymer crystallization. In addition, the induction time of crystallization in the blends is sensitive to the change of shear rate. In comparison with experimental data, the modified model shows its validity for the prediction of the induction time of crystallization of iPP in the blends. Moreover, the simulated relaxation time for the blends becomes longer with increasing percentage of PEOc in the blends. Copyright © 2012 Society of Chemical Industry  相似文献   

13.
The nonisothermal crystallization kinetics of poly(9,9‐dihexylfluorene‐alt‐2,5‐didodecyloxybenzene) (PF6OC12) from the melt were investigated using differential scanning calorimetry under different cooling rates. Several analysis methods were used to describe the nonisothermal crystallization behavior of PF6OC12. It was found that the modified Avrami method by Jeziorny was only valid for describing the early stage of crystallization but was not able to describe the later stage of PF6OC12 crystallization. Also, the Ozawa method failed to describe the nonisothermal crystallization behavior of PF6OC12. However, the method developed by combining the Avrami and Ozawa equations could successfully describe the nonisothermal crystallization kinetics of PF6OC12. According to the Kissinger method, the activation energy was determined to be 114.9 kJ mol?1 for the nonisothermal melt crystallization of PF6OC12. Copyright © 2006 Society of Chemical Industry  相似文献   

14.
Nonisothermal melt and cold crystallization kinetics of poly(aryl ether ketone ether ketone ketone) (PEKEKK) were investigated by differential scanning calorimetry (DSC). The Avrami equation modified by Jeziorny could only describe the primary stage of nonisothermal crystallization kinetics of PEKEKK. Also, the Ozawa equation could not describe its nonisothermal crystallization behavior. A convenient and reasonable kinetic approach was used to describe the nonisothermal crystallization behavior. The crystallization activation energy were estimated to be −264 and 370 KJ/mol for nonisothermal melt and cold crystallization by the Kissinger method. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 2865–2871, 2000  相似文献   

15.
The crystalline morphologies of isothermally and nonisothermally crystallized poly(phenylene sulfide) (PPS) and its blend with polyamide 66 (PA66) were investigated by polarized optical microscopy with a hot stage. The spherulite superstructure of PPS was greatly affected by crystallizable PA66; a Maltese cross was not clear, and the impingement between spherulites disappeared. This could be ascribed to the formation of small crystals of PA66, which filled in the PPS lamellae. The nonisothermal crystallization behavior was also measured by differential scanning calorimetry. The presence of PA66 changed the nonisothermal crystallization process of PPS. The maximum crystallization temperature of the PPS phase in the blend was higher that that of neat PPS, and this indicated that PA66 acted as a nucleus for PPS. Also, the compatibilizer poly(ethylene‐stat‐methacrylate) (EMA) was added to modify the interfacial interplay of the PA66/PPS blend system. The addition of EMA greatly influenced the nonisothermal crystallization process of the PPS phase in the blend system. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

16.
聚乙二醇增塑聚乳酸的非等温结晶动力学研究   总被引:2,自引:0,他引:2  
田怡  钱欣 《聚酯工业》2007,20(2):15-18
采用DSC方法对聚乙二醇(PEG)增塑聚乳酸的非等温结晶动力学进行了研究。结果表明,PEG的加入明显提高了聚乳酸的结晶速度。对所得数据分别用Ozawa方程和莫志深方法进行了处理,发现在给定温度范围里非等温结晶时,PLA/PEG主要是以均相成核的三维生长方式结晶;PLA的结晶速度随着PEG分子质量的增加而升高。  相似文献   

17.
18.
The melting behavior, nonisothermal crystallization behavior, and morphology of pure polypropylene (PP) and its blends were investigated by differential scanning calorimetry and polarized optical microscopy. The nonisothermal crystallization kinetics was analyzed using the Avrami equation modified by Jeziorny and the equation combining the Avrami and Ozawa method. The surface fold free energy and the effective activation energy for both PP and its blends were obtained by Hoffman‐Lauritzen theory and Vyazovkin's approach, respectively. The results showed that the presence of nylon 11 hindered the mobility of PP chains but accelerated the overall crystallization rate. The POM observation confirmed that the addition of nylon 11 decreased the spherulites size of PP matrix. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

19.
The influence of small amounts of poly(styrene‐co‐acrylonitrile) (SAN) on the non‐isothermal cold crystallization behavior and morphology of poly(ethylene terephthalate) (PET) was investigated by dynamic‐mechanical thermal analysis, differential scanning calorimetry (DSC), optical microscopy, and scanning electron microscopy. The results indicated that SAN had a limited solubility in the amorphous phase of PET although in a larger scale a phase separation occurred. The addition of 1 wt % of SAN promoted a significant reduction in the crystallization rate of PET, acting as an antinucleating agent. The kinetics parameters were determined applying both the Ozawa and Mo approaches. Mo's model described the crystallization evolution better than the Ozawa one because it is possible to analyze the kinetic parameters in similar range of crystallinity degrees. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

20.
Blends of Polyamide-6/Poly(phenylene oxide) (PA-6/PPO) were prepared by in situ polymerization, in which the reactive compatibilizer SP was added. Based on two kinds of kinetic equation of nonisothermal crystallization proposed by Ozawa and Liu, the influences of PPO, the cooling rate, and the compatibilizer on crystallization process of PA-6 were investigated. At a given cooling rate, the presence of PPO reduces the overall crystallization rate of PA-6; for a fixed PPO level, the time of crystallization completed becomes shorter when the cooling rate is higher; the addition of SP impedes the development of crystal growth. Scanning electronic microscope (SEM) results fortified the above conclusion. According to the analysis result of experiment data, it shows that the Ozawa equation does not adequately describe the nonisothermal crystallization behavior of PA-6/PPO blends, whereas the Liu approach can be well applied in this studied system. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 767–775, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号