首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mg–Al–Fe ternary layered double hydroxides (LDH) were synthesized based on bayer red mud by calcination‐rehydration method, and characterized using X‐ray diffraction and thermogravimetric analysis (TGA). The synergistic flame retardant effects of ammonium polyphosphate (APP) with LDH in ethylene‐vinyl acetate (EVA) composites were studied using limiting oxygen index (LOI), UL 94 test, cone calorimeter test (CCT), and smoke density test (SDT). The thermal degradation behavior of EVA/LDH/APP composites was examined by thermal gravimetric analysis‐fourier transform infrared spectrometry (TG‐FTIR). The results showed that LOI values decreased by incorporation of APP together with LDH; and, a suitable amount of APP in EVA/LDH composites can apparently improve UL 94 rating. The CCT results indicated that heat release rate (HRR) of the EVA/LDH/APP composites with APP decreased in comparison with that of the EVA/LDH composites. The SDT results showed that APP was helpful to suppress smoke. The TG‐FTIR data showed that the composites with APP had a higher thermal stability than the EVA/LDH composites at high temperature. POLYM. ENG. SCI., 54:766–776, 2014. © 2013 Society of Plastics Engineers  相似文献   

2.
Mg?CAl?CFe ternary layered double hydroxides (LDHs) were synthesized based on Bayer red mud by a calcination?Crehydration method, and characterized using powder X-ray diffraction and thermogravimetric analysis techniques. The synergistic flame-retardant effects of red phosphorus (RP) in ethylene vinyl acetate (EVA)/LDHs composites were studied with the limiting oxygen index (LOI), the UL 94 test, the cone calorimeter test (CCT), and the smoke density test (SDT). And, the thermal degradation behavior of the composites was examined by thermogravimetry-Fourier transform infrared spectrometry (TG-FTIR) analysis. Results showed that the LOI values of the composites with RP were basically higher than those of the pure EVA sample and composites containing LDHs only. And the addition of a suitable amount of RP in EVA/LDHs/RP composites can apparently favor UL 94 test. In the UL 94 test there was a V-1 rating and dripping phenomena for the composites containing 50?% LDHs. However, the composites containing 47.5?% LDHs and 2.5?% red phosphorus did not drip. The CCT results indicated that the heat release rate (HRR) of the EVA/LDHs/RP composites with a suitable amount of RP decreased in comparison with that of the EVA/LDHs composites. The SDT showed that RP was helpful to smoke suppression. TG-FTIR data showed that the EVA/LDHs/RP composites show a higher thermal stability than the EVA/LDHs composites. A suitable amount of RP in EVA/LDHs/RP composites resulted in an increase in LOI values, a decrease in the HRR, the achievement of the UL 94 V-1 rating with no dripping phenomenon, a good smoke suppression character, and a high thermal stability.  相似文献   

3.
Influence of independent Mg–Al‐layered double hydroxide (LDH), silicate modified expandable graphite (EG), mixture of LDH and EG at various ratios on ethylene vinyl acetate copolymer (EVA) combustion behavior and thermal stability was detected in sequence through the limiting oxygen index (LOI), vertical combustion (UL‐94) level, microscale combustion calorimeter (MCC) tests and thermal gravimetric/differential thermal gravimetric (TG/DTG) analysis. Results show that the 30 wt % LDH can improve the LOI of 70EVA/30LDH to 27.0%, but the combustion accompanies with serious melt‐dropping. While, the same amount of the EG can increase the LOI, UL‐94 level to 28.5%, V‐0 respectively. However, the combination of LDH and EG can further enhance the 70EVA/20LDH/10EG flame retardancy, it presents the LOI of 29.7%, UL‐94 level of V‐0, and total heat release of 29.5 kJ g?1. The excellent flame retardancy is attributed to its compact residue. Compared with residue mass, the residue compactness plays a more important role in improving flame retardancy. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44634.  相似文献   

4.
Mg‐Al‐Fe ternary layered double hydroxides (LDH) were synthesized based on red mud (RM) by calcination‐rehydration method, and characterized using X‐ray diffraction (XRD). And, the LDH coated with ZnSn(OH)6 (ZHS) was studied by XRD, scanning electron microscopy (SEM), transmission electron microscopy, and energy dispersive spectroscopy (EDS). The flame retardant and thermal properties of EVA composites based on RM, LDH and LDH coated with ZHS were studied using cone calorimeter test (CCT) and thermogravimetric analysis (TGA). The CCT data indicates that heat release rates (HRR) of EVA with LDH coated with ZHS decreases in comparison with that of EVA, EVA/RM and EVA/LDH composites. The TGA data show that LDH coated with ZHS can apparently increase the thermal stability and the charred residues after burning. POLYM. ENG. SCI., 54:2918–2924, 2014. © 2014 Society of Plastics Engineers  相似文献   

5.
Acrylonitrile‐butadiene‐styrene (ABS) resins are widely used in many sectors of the industry due to excellent mechanical properties, low temperature resistance, heat resistance, and chemical resistance. However, its flammability constitutes a key limitation in their applications. Consequently, development of flame‐retarding ABS resins is imperative. Herein, we report a novel synergistic system composed of Mg–Al–Co–layered double hydroxides (LDHs) prepared via a co‐precipitation method, and [4‐(diphenoxy‐phosphorylamino)‐6‐phenyl‐[l,3,5] triazin‐2‐y1]‐phosphoramidic acid diphenyl ester (DPCPB), a novel intumescent flame retardant. The properties of the as‐prepared LDHs/DPCPB/ABS composites are evaluated using standard combustion performance tests including limiting oxygen index (LOI) and vertical burning test (UL‐94). Novel ABS resins with the composition of ABS/DPCPB = 100/25 and ABS/DPCPB/LDHs = 100/2l/4 exhibit higher LOIs, 23.9 and 24.7, respectively, compared to 18.1 for the pure ABS. Meanwhile, they meet the V‐2 and A‐1 level, respectively, in UL‐94 tests. Moreover, the prepared composites exert flame‐retarding effects in gas phase and condensed phase simultaneously. Our results reveal synergistic effects between Mg–Al–Co–LDHs and DPCPB for the flame retardation of ABS resins. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46319.  相似文献   

6.
Abstract

The synergistic effects of Fe organic modified montmorillonite (Fe-OMMT) with layered double hydroxides (LDHs) in ethylene vinyl acetate copolymer/LDH (EVA/LDH) composites have been studied using thermal analysis [thermogravimetric analysis (TGA)], limiting oxygen index (LOI), UL-94 test and cone calorimeter test (CCT). The results showed that the addition of a given amount of Fe-OMMT apparently increased the LOI value and the rating in the UL-94 test. The results from the LOI and UL-94 tests show that Fe-OMMT can act as flame retardant synergistic agents in EVA/LDH composites. The CCT data indicated that the addition of Fe-OMMT in the EVA/LDH system can greatly reduce the heat release rate. The TGA data show that Fe-OMMT, as an excellent flame retardant synergist of LDH, cannot increase the thermal degradation temperature and the charred residues.  相似文献   

7.
Dihydrogen phosphate anion‐intercalated layered double hydroxides (M‐LDHs) was prepared by modification of Mg‐Al‐CO32− layered double hydroxides (LDHs) with anion exchange procedure. The structure of the M‐LDHs was characterized by X‐ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and transmission electron microscope (TEM). Polypropylene (PP)/LDHs and PP/M‐LDHs composites were prepared by melt compounding. The morphology of PP composites was investigated by TEM and XRD, which demonstrated that M‐LDHs could be well dispersed in PP matrix to form a nano‐scale exfoliated structure. Thermogravimetric analysis showed that thermal stability of PP composites was improved by the presence of LDHs and M‐LDHs. The flammability of PP composites was characterized by limited oxygen index, vertical burning test (UL‐94), FTIR, and cone calorimeter test, and the result showed the fire performance were significantly improved after the addition of LDHs and/or M‐LDHs which can remarkably decrease the heat release rate, total heat release, and the fire performance index. It was proposed that the lamellar structure of LDHs can block the heat, dilute the flammable gases and decrease the temperature, while the replaced H2PO4 into LDHs molecules can enhance the charred layer formation during burning procedure. Inductively coupled plasma mass spectrometer analysis showed that most phosphorus remained in the char layer, suggesting the replaced H2PO4 in LDHs molecules mainly function in the condensed phase. POLYM. COMPOS., 36:2230–2237, 2015. © 2014 Society of Plastics Engineers  相似文献   

8.
The synergistic effects of some metal oxides on novel intumescent flame retardant (IFR)–thermoplastic polyurethane (TPU) composites were evaluated by limiting oxygen index (LOI), vertical burning test (UL‐94), thermogravimetric analysis (TGA), cone calorimetry, and scanning electron microscopy. The experimental data indicated that the metal oxides enhanced the LOI value and restricted the dropping of the composites. The IFR–TPU composites passed the UL‐94 V‐0 rating test (1.6 mm) in the presence of magnesium oxide (MgO) and ferric oxide (Fe2O3) at 35 wt % IFR loading, whereas only the MgO‐containing IFR–TPU composite reached a UL‐94 V‐0 rating at 30 wt % IFR loading. The TGA results show that the metal oxides had different effects on the process of thermal degradation of the IFR–TPU compositions. MgO easily reacted with polyphosphoric acid generated by the decomposition of ammonium polyphosphate (APP) to produce magnesium phosphate. MgO and Fe2O3 showed low flammability and smoke emission due to peak heat release rate, peak smoke production rate, total heat release, and total smoke production (TSP). However, zinc oxide brought an increase in the smoke production rate and TSP values. Among the metal oxides, MgO provided an impressive promotion on the LOI value. The alkaline metal oxide MgO more easily reacted with APP in IFRs. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

9.
MgAlCe‐CO3 layered double hydroxides (LDHs) with different Ce/Al molar ratios were prepared by the constant pH coprecipitation method. The synthesized materials were characterized by XRD and FTIR, and the results showed that the hydrotalcite‐like materials have a layered structure. Different LDHs as stabilizers were mixed with PVC resin. The tests of thermal aging and Congo red for the PVC composites were carried out at 180 ± 1°C, respectively. The results showed when MgAlCe‐CO3‐LDHs were added into PVC as single thermal stabilizers, 3 phr (parts per hundred PVC resin) MgAlCe‐CO3‐LDH with Ce/Al (molar ratio) = 0.075 has a better stabilizing effect on PVC than others. Compared with single thermal stabilizers (LDHs or Ca/Zn systems), the composite thermal stabilizers including 0.3 g calcium stearate (Cast2), 1 g zinc stearate (Znst2), and 3 g MgAlCe‐CO3‐LDH have significantly enhanced the thermal stability of PVC sample, and the thermal stable time was over 190 min. The main reason could be concluded to the special structure of Ce element and the synergistic reaction among MgAlCe‐CO3‐LDHs, Cast2, and Znst2. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

10.
Pentaerythritol phosphate melamine salt (PPMS) as a single‐molecule intumescent fire retardant was synthesized and characterized. The influence of the PPMS content on the combustion and thermal decomposition processes of intumescent‐flame‐retardant (IFR) ethylene–vinyl acetate copolymer (EVA) composites was studied by limiting oxygen index (LOI) measurement, UL 94 rating testing, cone calorimetry, thermogravimetric analysis, and scanning electron microscopy. The LOI and UL 94 rating results illustrate that PPMS used in EVA improved the flame retardancy of the EVA composites. The cone calorimetry test results show that the addition of PPMS significantly decreased the heat‐release rate, total heat release, and smoke‐production rate and enhanced the residual char fire performance of the EVA composites. The IFR–EVA3 composite showed the lowest heat‐release and smoke‐production rates and the highest char residue; this means that the IFR–EVA3 composite had the best flame retardancy. The thermogravimetry results show that the IFR–EVA composites had more residual char than pure EVA; the char residue yield increased with increasing PPMS content. The analysis results for the char residue structures also illustrated that the addition of PPMS into the EVA resin helped to enhance the fire properties of the char layer and improve the flame retardancy of the EVA composites. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42148.  相似文献   

11.
A halogen‐free intumescent flame retardant expandable graphite composite (EG), with an initial expansion temperature of 202°C and expansion volume of 517 mL g−1, was successfully prepared via a facile two‐step intercalation method, i.e. using KMnO4 as oxidant and H2SO4, Na2SiO3·9H2O as intercalators. The prepared EG flame retardant was characterized by field emission scanning electron microscope, X‐ray diffraction spectroscopy, energy dispersive spectroscopy and Fourier transform infrared spectroscopy. Furthermore, flame retardancy and thermal property of various ethylene vinyl acetate copolymer (EVA) composites, including EVA/EG and EVA/EG/APP (ammonium polyphosphate) specimens, were studied through limiting oxygen index instrument (LOI), vertical combustion UL‐94 rating, thermal gravimetric and differential thermal analysis. The results indicate that the EVA/EG and EVA/EG/APP composites exhibit a better flame retardancy. Addition of EG at a mass fraction of 30% leads LOI of 70EVA/30EG composite improved to 28.7%. Even more, the synergistic effect between EG and APP improves the LOI of 70EVA/10APP /20EG composite to 30.7%. This synergistic efficiency is attributed to the formation of compact and stable layer‐structure, and the prepared EG can make EVA composite reach the UL‐94 level of V‐0. POLYM. COMPOS., 36:1407–1416, 2015. © 2014 Society of Plastics Engineers  相似文献   

12.
A new intumescent flame retardant (IFR) system consisting of ammonium polyphosphate (APP) and charing‐foaming agent (CFA) and a little organic montmorillonite (OMMT) was used in low‐density polyethylene (LLDPE)/ethylene‐vinyl acetate (EVA) composite. According to limiting oxygen index (LOI) value and UL‐94 rating obtained from this work, the reasonable mass ratio of APP to CFA was 3 : 1, and OMMT could obviously enhance the flame retardancy of the composites. Cone calorimeter (CONE) and thermogravimetric analysis (TGA) were applied to evaluate the burning behavior and thermal stability of IFR‐LLDPE/EVA (LLDPE/EVA) composites. The results of cone calorimeter showed that heat release rate peak (HRR‐peak) and smoke production rate peak (SPR‐peak) and time to ignition (TTI) of IFR‐LLDPE/EVA composites decreased clearly compared with the pure blend. TGA data showed that IFR could enhance the thermal stability of the composites at high temperature and effectively increase the char residue. The morphological structures of the composites observed by scanning electron microscopy (SEM) and X‐ray diffraction (XRD) demonstrated that OMMT could well disperse in the composites without exfoliation, and obviously improve the compatibility of components of IFR in LLDPE/EVA blend. The morphological structures of char layer obtained from Cone indicated that OMMT make the char layer structure be more homogenous and more stable. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

13.
The synergistic effects of exfoliated layered double hydroxides (LDH) with some halogen‐free flame retardant (HFFR) additives, such as hyperfine magnesium hydroxide (HFMH), microencapsulated red phosphorus (MRP), and expandable graphite (EG), in the low‐density polyethylene/ethylene vinyl acetate copolymer/LDH (LDPE/EVA/LDH) nanocomposites have been studied by X‐ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), thermal analysis (TGA and DTG), mechanical properties, limiting oxygen index (LOI), and UL‐94 tests. The XRD results show that EVA as an excellent compatilizer can promote the exfoliation of LDH and homogeneous dispersion of HFMH in the LDPE/EVA/HFMH/LDH nanocomposites prepared by melt‐intercalation method. The TEM images demonstrate that the exfoliated LDH layers can act as synergistic compatilizer and dispersant to make the HFMH particles dispersed homogeneously in the LDPE matrix. The results from the mechanical, LOI, and UL‐94 tests show that the exfoliated LDH layers can also act as the nano‐enhanced and flame retardant synergistic agents and thus increase the tensile strength, LOI values, and UL‐94 rating of the nanocomposites. The morphological structures of charred residues observed by SEM give the positive evidence that the compact charred layers formed from the LDPE/EVA/HFMH/LDH nanocomposites with the exfoliated LDH layers play an important role in the enhancement of flame retardant and mechanical properties. The TGA and DTG data show that the exfoliated LDH layers as excellent flame retardant synergist of MRP or EG can apparently increase the thermal degradation temperature and the charred residues after burning. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

14.
The flammability characterization and synergistic flame‐retardant effect of Fe‐montmorillonite (Fe‐OMT) in the ethylene‐vinyl acetate/aluminum hydroxide (EVA/ATH) compounds were studied using limiting oxygen index (LOI), UL‐94 test, cone calorimeter, microscale combustion calorimetry (MCC), and thermogravimetric analysis (TGA). The results showed that addition of Fe‐OMT increases the LOI value and improves the UL 94 rating. Cone calorimeter data indicate that the addition of Fe‐OMT greatly reduced the heat release rate and carbon monoxide production rate. Furthermore a compact char residue formed on the surface of the sample with a suitable of Fe‐OMT during the combustion. The MCC results indicate that addition of Fe‐OMT reduced the heat release rate and catalyzed the decomposition of EVA. The TGA data showed further evidence that Fe‐OMT can catalyze carbonization reactions. POLYM. ENG. SCI., 2012. © 2011 Society of Plastics Engineers  相似文献   

15.
Ti‐peroxide pillared layered double hydroxides (LDHs) have been prepared for the first time using water‐soluble Ti‐peroxide as an intercalating precursor. It is novel and alluring that the whole preparation procedure does not involve any usage of organic or chlorine‐containing hazards. Intercalated into the LDH interlayer region, Ti‐peroxide is prevented partially from condensation in the solvent evaporation. The interlayer Ti? O2 unit exists in triangular (η2) structure with C symmetry in most cases, giving an interlayer gallery of 0.50–0.60 nm. But in the case of pH 4.0, monodentate (η1) structure is also observed, giving an interlayer gallery of 0.70 nm. All the Ti‐peroxide pillared LDHs prepared in this work show catalytic activity in the selective oxidation of thioether. The Ti‐peroxide introduced into the interlayer regions of Mg/Al LDH with a particle size of around 50–120 nm exhibits better recyclability than Ti‐peroxide gel, either in bulk or adsorbed on the exterior surface of LDH particles. © 2009 American Institute of Chemical Engineers AIChE J, 2010  相似文献   

16.
The objective of this study was to compare the impact of β‐iron(III) oxide hydroxide [β‐Fe(O)OH] and iron hydroxide modified with phenyl dichlorophosphate [β‐Fe(O)OPDCP] on the thermal, combustion, and mechanical properties of ethylene–vinyl acetate (EVA)/magnesium hydroxide (MH) composites. For the EVA/MH composites in combination with these iron‐containing co‐additives, β‐Fe(O)OH and β‐Fe(O)OPDCP both led to an increase in the thermal stability at higher temperatures. The results of microscale combustion calorimetry indicate that the peak heat‐release rate, total heat release, and heat‐release capacity, which are indicators of a material fire hazard, all decreased. Moreover, significant improvements were obtained in the limiting oxygen index (LOI) and Underwriters Laboratories 94 ratings. However, the EVA4 system reached a V‐0 rating, whereas the EVA3 system reached a V‐2 rating. The LOI values for the EVA3 and EVA4 systems were 35 and 39, respectively. A homogeneous and solid structure of char residue caused by β‐Fe(O)OPDCP was observed by scanning electron microscopy. Furthermore, because of the good interfacial compatibility between the fillers and the EVA matrix, the EVA4 system presented better mechanical properties than the EVA3 system. Thermogravimetric analysis/IR spectrometry showed that β‐Fe(O)OPDCP reduced the combustible volatilized products of EVA/MH. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40112.  相似文献   

17.
Dodecyl sulfate anion (DS) intercalated magnesium iron layered double hydroxide (DS–Mg–Fe LDH) was firstly prepared by the co-precipitation method, and was characterized by the means of X-ray diffraction (XRD), Fourier infrared (FT-IR), Total Organic Carbon analysis (TOC), themogravimetric and differential thermal analysis (TG-DTA) and surface characteristics analysis (BET-N2). The sorption characteristics and mechanisms of hydrophobic organic contaminants (naphthalene, nitrobenzene, acetophenone) and hydrophilic contaminant (aniline) on DS–Mg–Fe LDH were investigated, and were subsequently compared with that on the inorganic magnesium iron layered double hydroxides (CO3–Mg–Fe LDH and NO3–Mg–Fe LDH). The greater sorption amount of organic contaminants on DS–Mg–Fe LDH than on CO3–Mg–Fe LDH and NO3–Mg–Fe LDH indicated that organic modified LDHs were potential sorbents for the abatement of organic contaminants. Sorption mechanism on DS–Mg–Fe LDH varied with the types of organic contaminants. The uptake curves of naphthalene, nitrobenzene and acetophenone on DS–Mg–Fe LDH were linear, and sorption capacities for three hydrophobic compounds were in the sequence of their hydrophobicity (refers to water solubility or Kow). These results suggested that the sorption mechanism was the partition between water and the organic interlayer phase composed of the alkyl chain of DS. After eliminating the influence of the hydrophobicity, the polar compounds (nitrobenzene and acetophenone) exhibited higher affinity to DS–Mg–Fe LDH than nonpolar compound (naphthalene), which demonstrated that both the hydrophobicity and polarity benefited the sorption of hydrophobic compounds on organic LDHs. For hydrophilic compound, aniline, its uptake curve was nonlinear. The sorption process of aniline was the cooperation of the adsorption on hydroxide surface through forming the hydrogen bonding and the weak partition to the interlayer organic phase.  相似文献   

18.
Composites of ultrafine polyhedral oligomeric octaphenyl silsesquioxane (OPS) and polycarbonate (PC) were prepared by melt blending. The mechanical and thermal properties of the composites were characterized by tensile and flexural tests, impact test, differential scanning calorimeter (DSC), dynamic mechanical analysis (DMA), and thermal gravimetric analysis (TGA). Rheological properties of these melts were tested by torque rheometer. The flame retardancy of the composites was tested by limiting oxygen index (LOI), the vertical burning (UL‐94), and cone calorimeter test. The char residue was characterized by scanning electron microscope (SEM) and ATR‐FTIR spectrum. Furthermore, the dispersion of OPS particles in the PC matrix was evidenced by SEM. The results indicate that the glass transition temperatures (Tg) and torque of the composites decrease with increasing OPS loading. The onset decomposition temperatures of composites are lower than that of PC. The LOI value and UL‐94 rating of the PC/OPS composites increase with increasing loading of OPS. When OPS loading reaches 6 wt %, the LOI value is 33.8%, UL‐94 (1.6 mm) V‐0 rating is obtained, and peak heat release rate (PHRR) decreases from 570 to 292 kJ m?2. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

19.
A thin‐sheet Al‐fiber@meso‐Al2O3@Fe‐Mn‐K catalyst is developed for the mass/heat‐transfer limited Fischer–Tropsch synthesis to lower olefins (FTO), delivering a high iron time yield of 206.9 µmolCO s?1 at 90% CO conversion with 40% selectivity to C2‐C4 olefins under optimal reaction conditions (350°C, 4.0 MPa, 10,000 mL/(g·h)). A microfibrous structure consisting of 10 vol % 60‐µm Al‐fiber and 90 vol % voidage undergoes a steam‐only‐oxidation and calcination to create 0.6 µm mesoporous γ‐Al2O3 shell along with the Al‐fiber core. Active components of Fe and Mn as well as additives (K, Mg, or Zr) are then placed into the pore surface of γ‐Al2O3 shell of the Al‐fiber@meso‐Al2O3 composite by incipient wetness impregnation method. Neither Mg‐modified nor Zr‐modified structured catalyst yields better FTO results than K‐modified one, because of their lower reducibility, poorer carbonization property, and fewer basicity. The favorable heat/mass‐transfer characteristics of this new approach are also discussed. © 2015 American Institute of Chemical Engineers AIChE J, 62: 742–752, 2016  相似文献   

20.
Poly(ethylene‐co‐vinyl acetate) (EVA)/magnetite (Fe3O4) nanocomposite was prepared with different loading of Fe3O4 nanoparticles. The mixing and compounding were carried out on a two‐roll mixing mill and the sheets were prepared in a compression‐molding machine. The effect of loading of nanoparticles in EVA was investigated thoroughly by different characterization technique such as transmission electron microscopy (TEM), X‐ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), limiting oxygen index (LOI), and technological properties. TEM analysis showed the uniform dispersion of filler in the polymer matrix and the dispersion of filler decreased with increase in filler content. XRD of the nanocomposite revealed the more ordered structure of the polymer chain. An appreciable increase in glass transition temperature was observed owing to the restricted mobility of Fe3O4‐filled EVA nanocomposite. TGA and flame resistance studies indicated that the composites attain better thermal and flame resistance than EVA owing to the interaction of filler and polymer segments. Mechanical properties such as tensile strength, tear resistance, and modulus were increased for composites up to 7 phr of filler, which is presumably owing to aggregation of Fe3O4 nanoparticle at higher loading. The presence of Fe3O4 nanoparticles in the polymer matrix reduced the elongation at break and impact strength while improved hardness of the composite than unfilled EVA. The change in technological properties had been correlated with the variation of polymer–filler interaction estimated from the swelling behavior. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40116.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号