首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The effect of styrene–butadiene block copolymers (SB) with varying number of blocks and length of styrene blocks on the morphology, rheology, and impact strength of 4/1 polystyrene/low‐density polyethylene (PS/LDPE) blends was studied. The scanning and transmission electron microscopy and X‐ray scattering were used for determination of the size of LDPE particles and the localization and structure of SB copolymers in blends. It is shown that the dependence of the LDPE particle size on the amount of added SB and localization of SB copolymers in blends is predominantly controlled by the length of their styrene blocks. It follows from thermodynamic considerations that the reason is the difference in composition asymmetry between SB with short and long styrene blocks. Coalescence of particles of SB having short styrene blocks at the surface of LDPE droplets and movement of SB with long styrene blocks to the PS–LDPE interface were observed during annealing of PS/LDPE/SB blends. Pronounced migration of SB copolymer during annealing shows that their localizations in blends in steady state on long steady mixing and at thermodynamic equilibrium are different. The values of tensile impact strength of PS/LDPE/SB blends correlate well with the size of LDPE particles and the amount of SB at the interface. Viscosity of PS/LDPE/SB depends on molecular structure of SB copolymers by a manner different from that of tensile impact strength. The results of this study and literature data lead to the conclusion that the compatibilization efficiency of SB copolymers for a certain polystyrene‐polyolefin pair is a function of not only molecular parameters of SB but also of the polystyrene/polyolefin ratio, the amount of SB in a blend, and mixing and processing conditions. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2803–2816, 2006  相似文献   

2.
The compatibilization efficiency of two styrene‐butadiene‐styrene triblock copolymers with short (SB1) and long (SB2) styrene blocks was studied in polystyrene (PS)–polypropylene (PP) blends of composition 20, 50, and 80 wt % PS. The supramolecular structure of the blends was determined by small‐angle X‐ray scattering, and the morphology was studied with transmission electron microscopy and scanning electron microscopy. Structural changes in both the uncompatibilized and compatibilized blends were correlated with the values of tensile impact strength of these blends. Even though the compatibilization mechanisms were different in blends with SB1 and SB2, the addition of the block copolymers to the PS–PP 4/1 and PS–PP 1/4 blends led to similar structures and improved the mechanical properties in the same way. These block copolymers had a very slight effect on the impact strength in PS–PP 1/1 blends, exhibiting a nearly cocontinuous phase morphology. The strong migration of SB2 copolymers to the interface and of SB1 copolymers away from the interface were detected during the annealing of compatibilized PS–PP 4/1 blends. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2431–2441, 2004  相似文献   

3.
The effect of molecular structure of styrene–butadiene block (SB) copolymers on the morphology, tensile properties, impact strength, and microhardness of polypropylene/polystyrene (PP/PS) (80/20) blends was studied. The addition of SB copolymers substantially reduces the size of dispersed PS particles formed at mixing. The distribution of SB copolymers between the interface and bulk phases is controlled by the length of styrene blocks in SB, but a decrease in the size of PS particles at mixing correlates with total molecular weight of SB copolymers. For a substantial part of compatibilized blends, PS particles aggregate rapidly during compression molding and form honeycomb‐like particles split by SB partitions, which persist at further annealing. Aggregation of PS particles continues slowly at further annealing. Blends containing PS particles with well‐developed honeycomb structure show lower yield stress, higher plasticity, and lower tensile impact strength than the blends having PS particles with simple or undeveloped honeycomb structure. Microhardness of PP/PS blends is additive and of PP/PS/SB blends is lower than the additive due to the effect of SB copolymers on crystalline structure of PP matrix. POLYM. ENG. SCI., 2012. © 2011 Society of Plastics Engineers  相似文献   

4.
Effect of block number in linear styrene‐butadiene (SB) block copolymers (BCs) on their compatibilization efficiency in blending polystyrene (PS) with polybutadiene (PB) was studied. Di‐, tri‐, or pentablocks of SB copolymers as well as their combinations were blended with the mentioned homopolymers; supramolecular structure determined by small angle X‐ray scattering method (SAXS), morphology using scanning electron microscopy (SEM) combined with image analysis (IA), and stress transfer characteristics of the blends were chosen as criteria of compatibilization efficiency of the copolymers used. It was proved that the addition of SB BCs led to remarkably finer phase structure and substantially higher toughness of PS/PB blends. Triblock copolymer showed to be the compatibilizer with higher efficiency than diblock, pentablock, and the di/triblock copolymer mixture. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

5.
Two styrene‐butadiene triblock copolymers differing in the length of their styrene blocks (40S‐60B‐40S and 10S‐60B‐10S) were used as compatibilizers for PS/PB (4/1) and PS/PP (4/1) blends. The supramolecular structure of the copolymers determined by small‐angle X‐ray scattering (SAXS), morphology of the blends using transmission electron microscopy (TEM), and their tensile impact strength were chosen as criteria of the compatibilization efficiency of the copolymers used. Different mechanisms of compatibilization for “symmetrical” system (PS/PB/SBS) and “asymmetrical” system (PS/PP/SBS) were proved. While for the PS/PB blend, the 40S‐60B‐40S copolymer proved to be a good compatibilizer, for the PS/PP blend, surprisingly, the 10S‐60B‐10S copolymer is more efficient.  相似文献   

6.
A reactive compatibilizer, mercapto‐functionalized EVA (EVASH), in combination with styrene‐butadiene block copolymer (SBS), was used to compatibilize the blends of polystyrene (PS) and ethylene–vinyl acetate copolymer (EVA). The reactive compatibilization was confirmed by the presence of insoluble material and from dynamic‐mechanical analysis. In addition to a more uniform morphology with small phase size, the compatibilization also provided excellent stabilization of the morphology, with an almost complete suppression of coarsening during annealing. As a consequence, a substantial increase on the elongation at break without significant influence on ultimate tensile strength was achieved for compatibilized blends with different compositions. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 14–22, 2006  相似文献   

7.
Blending is an effective method for improving polymer properties. However, the problem of phase separation often occurs due to incompatibility of homopolymers, which deteriorates the physical properties of polyblends. In this study, isotactic polypropylene was blended with low-density polyethylene. Crosslinking agent and copolymers of propylene and ethylene (either random copolymer or block copolymer) were added to improve the interfacial adhesion of PP/LDPE blends. The tensile strength, heat deflection temperature, and impact strength of these modified PP/PE blends were investigated. The microstructures of polyblends have been studied to interpret the mechanical behavior through dynamic viscoelasticity, wide-angle X-ray diffraction, differential scanning calorimetry, picnometry, and scanning electron microscopy. The properties of crosslinked PP/PE blends were determined by the content of crosslinking agent and processing method. For the material blended by roll, a 2% concentration of peroxide corresponded to a maximum tensile strength and minimum impact strength. However, the mechanical strength of those products blended by extrusion monotonously decreased with increasing peroxide content because of serious degradation. The interfacial adhesion of PP/PE blends could be enhanced by adding random or block copolymer of propylene and ethylene, and the impact strength as well as ductility were greatly improved. Experimental data showed that the impact strength of PP/LDPE/random copolymer ternary blend could reach as high as 33.3 kg · cm/cm; however, its rigidity and tensile strength were inferior to those of PP/LDPE/block copolymer blend.  相似文献   

8.
Hydrogenated segmented poly[butadiene-block-(styrene-block-butadiene)n] block copolymers, which were developed by use of a polymeric iniferter technique, were tested on their compatibilizing effectiveness for (10/90) LDPE/PS blends. They were found to be effective compatibilizers for this mixture, already giving a pronounced improvement in both tensile strength and strain of the blend at block copolymer concentrations of one percent. A concentration of five weight percent of segmented block copolymer provided a tenfold improvement in blend toughness. The effectiveness of the segmented block copolymers was found be dependent on the block copolymer composition. Block copolymer compositions of close to 50 : 50 EB : PS gave the best results. Received: 23 September 1996/Revised: 4 November 1996/Accepted: 7 November 1996  相似文献   

9.
The compatibilization of blends of poly(ethylene‐2,6‐naphthalate) (PEN) with polystyrene (PS), through the styrene‐glycidyl methacrylate copolymers (SG) containing various glycidyl methacrylate (GMA) contents, was investigated in this study. SG copolymers are able to react with PEN terminal groups during melt blending, resulting in the formation of desirable SG‐g‐PEN copolymers in the blend. These in situ formed copolymers tend to reside along the interface preferentially as the result of interfacial reaction and thus function as effective compatibilizers in PEN/PS blends. The compatibilized blends exhibit higher viscosity, finer phase domain, and improved mechanical properties. It is found that the degree of grafting of the in situ formed SG‐g‐PEN copolymer has to be considered as well. In blends compatibilized with the SG copolymer containing higher GMA content, heavily grafted copolymers would be produced. The length of the styrene segment in these heavily grafted copolymers would be too short to penetrate deep enough into the PS phase to form effective entanglements, resulting in the lower compatibilization efficiency in PEN/PS blends. Consequently, the in situ formation of SG‐g‐PEN copolymers with an optimal degree of grafting is the key to achieving the best performance for the eventually produced PEN/PS blends through SG copolymers. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 967–975, 2003  相似文献   

10.
Styrene‐acrylonitrile random copolymer (SAN) and polyarylate (PAr) block copolymer were applied as a reactive compatibilizer for polyamide‐6 (PA‐6)/acrylonitrile‐butadiene‐styrene (ABS) copolymer blends. The SAN–PAr block copolymer was found to be effective for compatibilization of PA‐6/ABS blends. With the addition of 3.0–5.0 wt % SAN–PAr block copolymer, the ABS‐rich phase could be reduced to a smaller size than 1.0 μm in the 70/30 and 50/50 PA‐6/ABS blends, although it was several microns in the uncompatibilized blends. As a result, for the blends compatibilized with 3–5 wt % block copolymer the impact energy absorption reached the super toughness region in the 70/30 and 50/50 PA‐6/ABS compositions. The compatibilization mechanism of PA‐6/ABS by the SAN–PAr block copolymer was investigated by tetrahydrofuran extraction of the SAN–PAr block copolymer/PA‐6 blends and the model reactions between the block copolymer and low molecular weight compounds. The results of these experiments indicated that the SAN–PAr block copolymer reacted with the PA‐6 during the melt mixing process via an in situ transreaction between the ester units in the PAr chain and the terminal amine in the PA‐6. As a result, SAN–PAr/PA‐6 block copolymers were generated during the melt mixing process. The SAN–PAr block copolymer was supposed to compatibilize the PA‐6 and ABS blend by anchoring the PAr/PA‐6 and SAN chains to the PA‐6 and ABS phases, respectively. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 2300–2313, 2002  相似文献   

11.
In the present study, low-density polyethylene (LDPE) and plasticized starch (PLST) blends, containing different percentages of PLST, were prepared. In these blends, two different polyethylene/maleic anhydride graft (PE-g-MA) copolymers containing 0.4 and 0.8 mol % anhydride groups, respectively, were added as compatibilizers at 10 wt % PLST. The compatibilization reaction was followed by FTIR spectroscopy. The morphology of the blends was studied using scanning electron microscopy (SEM). It was found that as the amount of anhydride groups in the copolymers increases a finer dispersion of PLST in the LDPE matrix is achieved. This is reflected in the mechanical properties of the blends and especially in the tensile strength. The blends compatibilized with the PE-g-MA copolymer containing 0.8 mol % anhydride groups have a higher tensile strength, which in all blends, even in those containing 20 and 30 wt % PLST, is similar to that of pure LDPE. The biodegradation of the blends followed the exposure to activated sludge. It was found that the compatibilized blends have only a slightly lower biodegradation rate compared to the uncompatibilized blends. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 70: 1503–1521, 1998  相似文献   

12.
The compatibilizing effects of styrene‐glycidyl methacrylate (SG) copolymers with various glycidyl methyacrylate (GMA) contents on immiscible blends of poly(trimethylene terephthalate) (PTT) and polystyrene (PS) were investigated using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and 13C‐solid‐state nuclear magnetic resonance (NMR) spectroscopy. The epoxy functional groups in the SG copolymer were able to react with the PTT end groups (? COOH or ? OH) to form SG‐g‐PTT copolymers during melt processing. These in situ–formed graft copolymers tended to reside along the interface to reduce the interfacial tension and to increase the interfacial adhesion. The compatibilized PTT/PS blend possessed a smaller phase domain, higher viscosity, and better tensile properties than did the corresponding uncompatibilized blend. For all compositions, about 5% GMA in SG copolymer was found to be the optimum content to produce the best compatibilization of the blend. This study demonstrated that SG copolymers can be used efficiently in compatibilizing polymer blends of PTT and PS. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2247–2252, 2003  相似文献   

13.
In this study, a blend of polystyrene (PS)/ethylene vinyl acetate (EVA) (PS/EVA, 90 : 10 wt %) was compatibilized with three different block copolymers, in which their end blocks were compatible with either styrene or EVA. The compatibilized blends with different compositions were prepared using a twin‐screw extruder and injection molded into the required test specimens. Mechanical properties of the blends, such as tensile properties and Charpy impact strength, morphology of tensile fractured surfaces, rheological properties, and thermal properties, were investigated. The results show that the interaction between the dispersed and continuous phase can be improved by the addition of a compatibilizer. Appreciable improvement in the impact strength of the blend with 15 wt % of compatibilizer C (polystyrene‐block‐polybutadiene) was observed. Its mechanical properties are comparable to those of the commercial high‐impact polystyrene, STYRON 470. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 2071–2082, 2004  相似文献   

14.
In this study, immiscible blends of HDPE and an amorphous glassy polymer were compatibilized with styrene-hydrogenated butadiene block copolymers. The glassy phase consisted of either pure PS or a miscible blend of PS and polyether copolymer (PEC); PEC is similar to poly(2,6-dimethyl-1,4-phenylene oxide) (PPO). The morphology of these two-phase mixtures depended on physical characteristics of the components and the method of fabrication. Suitable copolymers increased the degree of dispersion and minimized heterogeneities resulting from the inherent incompatibility of the individual phases. Further reduction in the phase size and increased adhesion between the components of modified blends were achieved by increasing the composition of PEC in the glassy phase. It was concluded that favorable exothermic mixing between PEC and PS endblocks of the copolymers provided an additional driving force for compatibilization. Results from dynamic mechanical thermal analysis suggests that penetration by the copolymers into the homopolymer phases is not complete.  相似文献   

15.
The effect of molecular structure of six model styrene–butadiene (SB) block copolymers with various number of blocks and two lengths of styrene blocks on morphology, rheological properties, and impact strength of polystyrene (PS)/high‐density polyethylene (PE) blends was studied. It was found that location of SB copolymers in the blends is determined by the length of styrene blocks. The length of styrene blocks has similar effects on impact strength and linear viscoelastic properties of the blends. On the other hand, the correlation was not found between the effects of a number of blocks on impact strength and linear viscoelastic properties of the blends. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2303–2309, 2003  相似文献   

16.
The present investigation pertains to the structure–property relationships of highly structured graft copolymers. The specific model graft copolymers are based on an elastomeric backbone, i.e., poly(ethyl acrylate), and monodisperse thermoplastic grafts, i.e., polystyrene. The synthesis of these graft copolymers is based on the free-radical polymerization of ethyl acrylate and an anionically polymerized polystyrene macromonomer. It is clearly demonstrated that grafts significantly enhance tensile properties. The level of improvement is directly related to the graft level, i.e., number of grafts/chain, and graft molecular weight. In addition, blending these graft copolymers into their respective homopolymer mixture results in a mechanical performance strikingly dependent on the molecular characteristics of the graft copolymer. For example, tensile strength is maximized at a level between one and two grafts per chain. This result parallels observations noted in blend compatibilization using diblock and triblock copolymers. It is also demonstrated that using mutually grafted copolymers produces an interesting variety of compatibilized ternary (or higher) component blends. © 1994 John Wiley & Sons, Inc.  相似文献   

17.
This paper deals with in situ compatibilization of PE/PS blends via Friedel-Crafts reaction, performed at the interphase. Two polyethylenes having different molecular weights, and the same PS, were used along a wide range of catalyst concentration. The influence of the graft copolymer architecture and content on the efficiency of blend compatibilization was studied. The emulsifying effect, morphological aspects and mechanical behavior were also assessed for these blends. The amount of copolymer formed increases with catalyst concentration and the short chain length fraction of the homopolymers. The high molecular weight (MW) copolymers behaved as better compatibilizers as they showed, at the cmc, greater graft copolymer concentration than the low MW ones. A substantial increase in interfacial adhesion and particle size reduction was observed, even at catalyst concentrations as low as 0.3 wt%. In correspondence, mechanical properties, like ductility and yield strength, were enhanced by the effect of this Friedel-Crafts reaction's compatibilization.  相似文献   

18.
The effect of the in situ compatibilization on the mechanical properties of PP/PS blends was investigated. The application of Friedel-Crafts alkylation reaction to the PP/PS-blend compatibilization was assessed. Styrene/AlCl3 was used as catalyst system. The graft copolymer (PP-g-PS) formed at the interphase showed relatively high emulsifying strength. Scission reactions, occurring in parallel with grafting, were verified for PP and PS at high catalyst concentration, but no crosslinking reactions were detected. Tensile tests were performed on dog-bone specimens of the blends. Both elongation at break and toughness increased with catalyst concentration. At 0.7% AlCl3, a maximum was reached, which amounted to five times the value of the property for the uncompatibilized blend. At higher catalyst concentrations these properties decreased along with the PP molecular weight due to chain-scission reactions. On the other hand, the tensile strength did not change with the catalyst concentration. The in situ compatibilized blends showed considerable improvement in mechanical properties, but were adversely affected by chain scissions at high catalyst contents.  相似文献   

19.
Poly(isoprene–butyl acrylate) block copolymers with a variety of molecular weights and compositions were prepared via a controlled free‐radical polymerization with an iniferter. Subsequently, the block copolymers were used as compatibilizers in natural/acrylic rubber blends. Scanning electron micrographs revealed a cocontinuous morphology in the case of the normal blends with a low natural rubber content (20 wt %), whereas the blends that contained more natural rubber showed a dispersed‐particle morphology. When the rubbers were blended with 5 wt % block copolymer, the particle size decreased, and the tensile strength of the resulted blends increased, regardless of the block copolymer characteristics. For the blend that exhibited a cocontinuous morphology, the most effective compatibilizer was the block copolymer with an average molecular weight of 22,000 g/mol, containing mainly (87%) polyisoprene block. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 921–927, 2003  相似文献   

20.
Summary An attempt is made to extend the model of Leibler for the emulsifying activity and interfacial properties of A-b-B diblock copolymers in incompatible blends of the homopolymers A and B-which are identical with the respective copolymer components- to enthalpically interacting C-b-D diblock copolymers, the block C being thermodynamically compatible with A and D with B. Due to the attractive enthalpic interaction the A/C-b-D/B compatibilized blends are promising for optimum phase adhesion (bold types for thermodynamically compatible partners). Thus, the extended model for a plane interfacial layer includes the enthalpic interaction of the compatible polymer pairs beside the entropic effects. The approach starts with the equillibrium supposition, not taking into consideration enthalpy driven migration effects of the block copolymer from the bulk to the interface, The model confirms a dominant role of the enthalpic interaction between blocks of the diblock copolymer and the respective homopolymers to the compatibilization of incompatible blend components. It is applicable also for blends compatibilized with block copolymers of unfavourable repulsive type interaction, A/C-b-D/B, and for blend systems with mixed type interactions, e. g. A/C-b-B/B or A/C-b-D/B.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号