首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hwi-yong Lee  Younggon Son 《Polymer》2006,47(11):3929-3934
During the capillary extrusion with several different polyethylenes, we observe an abnormal rheological behavior. The nominal viscosity of polyethylene melt in the gross melt fracture regime does not change with a temperature. All polyethylenes tested show same behaviors. More interestingly, the nominal viscosity in the gross melt fracture regime shows even no molecular weight dependency when PEs have similar molecular structures (degree of branching and co-monomer content). From various experiments, we conclude that this abnormal phenomenon is relevant to the structural change with the melt temperature.  相似文献   

2.
Effect of applied processing history on flow instability at capillary extrusion is studied using a commercially available low‐density polyethylene (LDPE) having long‐chain branches. It is found that processing history in an internal mixer in a molten state depresses long‐time relaxation mechanism associated with long‐chain branches, which is known as “shear modification.” Consequently, the onset of output rate for melt fracture increases greatly. Furthermore, it should be noted that the sample having intense shear history shows shark‐skin failure without volumetric distortion, although it has been believed that LDPE exhibits gross melt fracture at capillary extrusion. The reduction of elongational viscosity by the alignment of long‐chain branches along to the main chain is responsible for the anomalous rheological response. As a result, the sample shows shark‐skin failure like a linear polyethylene at a lower output rate than the critical one for gross melt fracture. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

3.
The properties of two polyethylenes [a high‐density polyethylene (HDPE) and a low‐density polyethylene (LDPE)] were studied after several extrusion cycles. To reduce the degradation effects during the reprocessing, a mixture of two stabilizers was added to the formulations. The predominant degradation mechanism was chain scission for the HDPE and chain branching and crosslinking for the LDPE. For both polyethylenes the FTIR spectra exhibited a growth in the number of carbonyl groups as a function of the number of extrusion cycles. Their tensile properties were degraded with the reprocessing but both polyethylenes maintained their nearly constant thermal behavior and crystallinity. The addition of a primary phenolic antioxidant and a secondary phosphite antioxidant preserved the melt behavior of virgin materials after the reprocessing and reduced the degradation effects. From the tensile tests, the efficiency of the antioxidants in the LDPE was very high and, after the reprocessing, the material retained the mechanical properties of virgin LDPE. The efficiency of the antioxidants for the HDPE was not significant. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3910–3916, 2004  相似文献   

4.
Metallocene‐catalyzed, low‐density and linear low‐density polyethylenes with similar melt indexes were used to investigate how side‐chain structures influence the elongation viscosity and viscoelastic properties. The viscoelastic properties were determined with a rotation rheometer, while the elongation viscosities were acquired by using isothermal fiber spinning. The Phan‐Thien‐Tanner (PTT) model was also used to understand how the side‐chain structure affects the elongation behavior. Experimental results demonstrate that the log G′ vs. log G″ plot can qualitatively describe the effects of the side chain branch on the rheological properties of polyethylene melts. According to the results determined by the PTT model, low‐density polyethylene (LDPE) has low elongation viscosities at high strain rates. This low elongation viscosity can be attributed to the fact that LDPE has high shear thinning behavior. The long‐chain branching tends to increase entanglements, thereby enhancing the storage modulus, elongation viscosity and shear‐thinning behaviors. Uniform side‐chain distribution lowers the entanglements, which results in a low storage modulus, elongation viscosity and shear‐thinning behavior.  相似文献   

5.
The effects of ultrasonic oscillations and die materials on die pressure, productivity of extrusion, melt viscosity of metallocene‐catalyzed linear low density polyethylene (mLLDPE), as well as their mechanism were studied in a special ultrasonic oscillations extrusion system developed in our lab. Die materials used in our experiment included steel, brass, and polytetrafluoroethylene (PTFE). The experimental results showed that ultrasonic oscillations as well as die materials have great influence on the rheological and processing behavior of mLLDPE. Ultrasonic oscillations can greatly increase the productivity of mLLDPE melt extruded through different dies, and can decrease the die pressure and the melt viscosity of mLLDPE. Compared with steel or brass die, mLLDPE melt extruded through PTFE die is more sensitive to ultrasonic oscillations. A possible mechanism for the improved processability of mLLDPE is proposed in this article. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 1873–1878, 2003  相似文献   

6.
Investigations have been carried out by different methods on the rheological properties, both shear and tensile, of some unfractionated samples of low density polyethylene, the molecular characteristics and long chain branching content being known. From the comparison with analogous linear polyethylenes it clearly appears that correlations exist between the long chain branching content and the main viscous and elastic parameters of the melt. The results obtained illustrate the possibility of reaching a preliminary evaluation of the LCB degree in the integral polyethylene samples by simple rheological measurements.  相似文献   

7.
《Polymer》2003,44(5):1589-1594
The rheological properties of metallocene-catalysed linear polyethylenes and those of blends prepared with ethylene-vinyl acetate copolymers were evaluated. The pure polyethylenes showed characteristic features of linear polymers in the melt state, but poor processability, as would be expected for materials of narrow molecular weight distribution. The characteristic sharkskin and slip-stick regimes appear at around 0.16 and 0.35 MPa, respectively, during extrusion. Blending polyethylene with ethylene/vinyl acetate copolymers gave rise to smooth extrusion for a characteristic blend composition. The linear viscoelastic response of the blends revealed the behaviour of heterogeneous emulsion-like polymer systems. Through the application of several rheological criteria, we were able to locate the phase inversion concentration of the system. This concentration was found to closely correspond to that at which distortion regimes disappear during extrusion.  相似文献   

8.
Interaction between 0.05 wt % organoclay and polyethylenes of different short chain branching (SCB) was studied. Linear rheology (van Gurp‐Palmen plot) was used to study the effect of organoclay on the rheology of polyethylenes. Organoclay had effect only on the van Gurp‐Palmen plot of linear polyethylene. Fourier transform (FT) rheology, extrusion at high‐shear rates in a slit rheometer, transient stress growth analysis, and extensional rheology were conducted to examine the potential of organoclay as a processing aid. Organoclay reduced the transient stress overshoot, normal stress difference, ηo, onset of shear thinning, and extrusion pressure of polyethylene. The reduction was more pronounced in linear polyethylene without branching. Such effects gradually decreased as the branch content increased. The trend was independent of the type of flow (shear or extensional). It was interesting to note that FT rheology was not effective in explaining the impact of organoclay on polyethylene. The work concluded with the proposition that organoclay (as low as 0.05 wt %) was a good processing aid for linear polyethylene and polyethylenes with low content of SCB. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

9.
The reactive extrusion of maleic anhydride grafted polypropylene (PP‐g‐MAH) with ethylenediamine (EDA) as coupling agent is carried out in a corotating twin‐screw extruder to produce long chain branched polypropylene (LCBPP). Part of PP‐g‐MAH is replaced by maleic anhydride grafted high‐density polyethylene (HDPE‐g‐MAH) or linear low‐density polyethylene (LLDPE‐g‐MAH) to obtain hybrid long chain branched (LCB) polyolefins. Compared with the PP‐g‐MAH, PE‐g‐MAH, and their blends, the LCB polyolefins exhibit excellent dynamic shear and transient extensional rheological characteristics such as increased dynamic modulus, higher low‐frequency complex viscosity, broader relaxation spectra, significantly enhanced melt strength and strain‐hardening behaviors. The LCB polyolefins also have higher tensile strength, tensile modulus, impact strength and lower elongation at break than their blends. Furthermore, supercritical carbon dioxide (scCO2) is constructively introduced in the reactive extrusion process. In the presence of scCO2, the motor current of the twin extruder is decreased and LCB polyolefins with lower melt flow rate (MFR), higher complex viscosity and increased tensile strength and modulus can be obtained. This indicates that the application of scCO2 can reduce the viscosity of melt in extruder, enhance the diffusion of reactive species, and then facilitate the long chain branching reaction between anhydride group and primary amine group. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

10.
聚合物动态挤出流变行为研究   总被引:30,自引:5,他引:25  
本文论述聚合物材料毛细管动态流变行为的测量原理,介绍了自行研制成功的用于合物熔体挤出的毛细管动态流变仪。在该仪器上对LDPE进行了实验研究,发现熔体的粘度与振动源的频率、振幅呈非线性关系。在振动必场作用下LDPE熔体的粘度减小,随振动频率的变化有一最小值。这对矣合物动态塑化挤出工艺过程控制具有十分重要意义。  相似文献   

11.
The effect of modifying polypropylene by the addition of long‐chain branches on the rheological properties and performance of foam extrusion was studied. Three polypropylenes, two long‐chain‐branched polypropylenes and a linear polypropylene, were compared in this study. The modification was performed with a reactive‐extrusion process with the addition of a multifunctional monomer and peroxide. The rheological properties were measured with a parallel‐plate and elongational rheometer to characterize the branching degree. The change from a linear structure to a long‐chain‐branched nonlinear structure increased the melt strength and elasticity of polypropylene. Also, there was a significant improvement in the melt tension and sag resistance for branched polypropylenes. Foaming extrusion was performed, and the effect of the process variables on the foam density was analyzed with Taguchi's experimental design method. For this study, an L18(2135) orthogonal array was used on six parameters at two or three levels of variation. The considered parameters were the polypropylene type, the blowing agent type, the blowing agent content, the die temperature, the screw speed (rpm), and the capillary die length/diameter ratio. As a result, the most significant factor that influenced the foam density was the degree of long‐chain branching of polypropylene. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1793–1800, 2005  相似文献   

12.
The elongational viscosities of polyethylenes with different molecular characteristics were measured at different Hencky strains and temperatures with a capillary rheometer by the replacement of the capillary cylindrical die with a hyperbolic converging die. The hyperbolic shape of the die established a purely elongational flow field at a constant elongational strain rate throughout the die. The effects of molecular characteristics such as the molecular weight, molecular weight distribution, and long‐chain branching and processing conditions such as the temperature and Hencky strain on the elongational rheology of the polyethylene samples were studied. Good master curves were generated for temperature and Hencky strain shifting and simultaneous shifting with respect to both the temperature and Hencky strain. Both the molecular weight distribution and long‐chain branching seemed to promote strain rate thinning and reduce the elongational viscosity. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 1184–1194, 2007  相似文献   

13.
The influences of ultrasonic oscillations on rheological behavior and mechanical properties of metallocene‐catalyzed linear low‐density polyethylene (mLLDPE)/low‐density polyethylene (LDPE) blends were investigated. The experimental results showed that the presence of ultrasonic oscillations can increase the extrusion productivity of mLLDPE/LDPE blends and decrease their die pressure and melt viscosity during extrusion. Incorporation of LDPE increases the critical shear rate for sharkskin formation of extrudate, crystallinity, and mechanical properties of mLLDPE. The processing behavior and mechanical properties of mLLDPE/LDPE blends were further improved in the presence of ultrasonic oscillations during extrusion. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 2522–2527, 2004  相似文献   

14.
An experimental investigation of the flow behavior of three polypropylene melts with different molecular structures during extrusion through a coat‐hanger die is presented. Two linear and one long‐chain branched material, rheologically characterized in shear and elongation, were investigated. Using laser–Doppler velocimeter measurements of the velocity profiles across the gap height were performed at five various locations along the die. The uniformity of the velocity distribution along the die has been assessed using the maximum velocities v0 of the corresponding velocity profiles across the gap. The velocity distribution along the die changes with throughput and temperature. Regarding the rheological properties, it was found that the power‐law index of the viscosity as a function of shear rate has a decisive influence on the uniformity of flow but that the pronounced strain hardening in elongation typical of the long‐chain branched polypropylene is not reflected by the velocity distribution along the die. POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers  相似文献   

15.
Summary: The rheological behavior of polyethylenes is mainly dominated by the molecular weight, the molecular weight distribution and by the type, the amount and the distribution of the chain branches. In this work a linear metallocene catalyzed polyethylene (m‐PE), a branched metallocene catalyzed polyethylene (m‐bPE), a conventional linear low density polyethylene (LLDPE) and a low density polyethylene (LDPE) have been investigated in order to compare their rheological behavior in shear and in elongational flow. The four samples have similar melt flow index and in particular a value typical of film blowing grade. The melt viscosity has been studied both in shear and in isothermal and non‐isothermal elongational flow. The most important features of the results are that in shear flow the m‐PE sample shows less pronounced non Newtonian behavior while in the elongational flow the behavior of m‐PE is very similar to that of the linear low density polyethylene: the narrower molecular weight distribution and the better homogeneity of the branching distribution are reasonably responsible for this behavior. Of course the most pronounced non‐linear behavior is shown, as expected, by the LDPE sample and by the branched metallocene sample. This similar behavior has to be attributed to the presence of branching. Similar comments hold in non‐isothermal elongational flow; the LDPE sample shows the highest values of the melt strength and the other two samples show very similar values. As for the breaking stretching ratio the opposite is true for LDPE while m‐PE and LLDPE show higher values. The transient isothermal elongational viscosity curves show that the branched samples show a strain hardening effect, while LLDPE and m‐PE samples present a linear behavior.

Dimensionless flow curves of different polyethylene samples.  相似文献   


16.
The melt rheological behavior of intimately mixed short sisal–glass hybrid fiber‐reinforced low‐density polyethylene composites was studied with an Instron capillary rheometer. The variation of melt viscosity with shear rate and shear stress at different temperatures was studied. The effect of relative composition of component fibers on the overall rheological behavior also was examined. A temperature range of 130 to 150°C and shear rate of 16.4 to 5470 s?1 were chosen for the analysis. The melt viscosity of the hybrid composite increased with increase in the volume fraction of glass fibers and reached a maximum for the composite containing glass fiber alone. Also, experimental viscosity values of hybrid composites were in good agreement with the theoretical values calculated using the additive rule of hybrid mixtures, except at low volume fractions of glass fibers. Master curves were plotted by superpositioning shear stress and temperature results. The breakage of fibers during the extrusion process, estimated by optical microscopy, was higher for glass fiber than sisal fiber. The surface morphology of the extrudates was analyzed by optical and scanning electron microscopy. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 432–442, 2003  相似文献   

17.
The extrusion (single‐screw) characteristics of four high‐molecular‐weight, broad‐molecular‐weight‐distribution (MWD) polyethylene resins are discussed with an emphasis on the output rate. Despite the high molecular weights of the subject polyethylenes, their broad MWD (Mw/Mn range: 10 to 50) does not limit the pressure and torque developed during extrusion. However, the specific output of the four polymers was quite varied. First, the dynamics of the solids conveying section were examined with the highest‐molecular‐weight polyethylene exhibiting lower solids‐conveying rate than the other three. Further, a simple and quick method to evaluate the relative solids‐conveying efficiencies for various polyethylenes is presented. Finally, the dependence of the specific output on the melt rheology of the polymers is also addressed; specifically, the shear‐thinning extent of the melt in the metering section was found to influence output rate. The unique and counterintuitive temperature‐dependence of the shear‐thinning character for one of the four polymers will also be addressed in relation to its extrusion characteristics. Polym. Eng. Sci. 44:2266–2273, 2004. © 2004 Society of Plastics Engineers.  相似文献   

18.
Flow‐induced migration polyethylene‐co‐methacrylic acid (PE‐co‐MA) and polystyrene‐b‐polydimethylsiloxane (PS‐b‐PD MS) copolymer additives in commercial long‐chain branch polyethylene (PE) and narrow‐molecular distribution polystyrene (PS) hosts was investigated in a capillary flow device. Attenuated Total Reflection Fourier Transform Infrared (ATR‐FTIR) spectroscopy and Dynamic Contact Angle (DCA) measurements were used to characterize surface composition of polymer specimen following extrusion through metallic dies with various length‐to‐diameter (L/D) ratios, (1100 ? L/D ? 3000). Results from experiments covering a broad range of shear rates and polymer residence times in the dies are reported. Provided that the polymer residence time in the die is sufficiently long, shear is found to increase the concentrations of low molecular weight copolymer additives on the host polymer's surface. The surface composition of copolymer additive is found to vary strongly with the wall shear rate and die L/D ratio. Decreasing the die diameter at fixed flow rate is found, for example, to be a more effective method for enhancing transport of additive to a polymer's surface than increasing shear rate at fixed diameter. A mechanism based on shear‐induced diffusion is proposed to explain the observed migration.  相似文献   

19.
The crystallization, and mechanical and rheological properties of decrosslinked–crosslinked‐high‐density polyethylenes using supercritical methanol were investigated by DSC, WAXS, DMTA, and UDS. Crosslinked high‐density polyethylenes were successfully decrosslinked in a supercritical methanol condition. The residual gel content of the decrosslinked samples decreased with the reaction temperature. The crystallization behavior, mechanical, and rheological properties of the decrosslinked samples were influenced considerably by the gel content. As the gel content increased, the network gel structure restricted the chain mobility of polymer molecules in the melt state and hindered their crystallization. Thus, the nonterminal yield behavior in the melt state was enhanced and the crystallinity decreased. The dynamic elastic modulus of the decrosslinked sample in solid state increased with the increase in the crystallinity. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

20.
Branched polyethylenes, low‐density polyethylenes (LDPE1 and LDPE2) or long‐chain‐branched very low density polyethylenes (VLDPE2), were blended with very low density polyethylenes containing short branches (VLDPE1 and VLDPE3). The rheological and thermal measurements of the pure copolymers and their blends (VLDPE1–LDPE1, VLDPE1–LDPE2, VLDPE1–VLDPE2, and VLDPE2–VLDPE3) were taken by controlled stress rheometry and differential scanning calorimetry, respectively. The shear‐thinning effect became stronger with increasing long‐chain‐branched polymer compositions when it was correlated with the flow behavior index, and the extent of shear thinning was different for each blend set. Stronger shear thinning and a linear composition dependence of the zero‐shear viscosity were observed for the VLDPE1–LDPE1 and VLDPE1–LDPE2 blends. These blends followed the log additivity rule, and this indicated that they were miscible in the melt at all compositions. In contrast, a deviation from the log additivity rule was observed for the VLDPE1–VLDPE2 blend compositions with 50% or less VLDPE2 and for the VLDPE3–VLDPE2 blends with 50% or more VLDPE2. The thermal properties of the blends were consistent with the rheological properties. VLDPE1–LDPE1 and VLDPE1–LDPE2 showed that these blends were characteristic of a single‐component system at all compositions, whereas the phase separation (immiscibility) was detected only for VLDPE1–VLDPE2 blends with 50% or less VLDPE2 and for VLDPE3–VLDPE2 blends with 50% or more VLDPE2. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 95: 1549–1557, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号