首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
产品介绍     
《微波学报》1995,11(4)
X—波段放大器中心频率;10GHz带宽:±500MHz增益;28dB输出功率: 20dBmKU-波段放大器中心频率:13~18GHz带宽:±250MHz增益:30dB噪声系数:<2dB输出功率: 20dBm  相似文献   

2.
产品介绍     
《微波学报》1995,11(1)
X—波段放大器中心频率:10GHz带宽:±500MHz增益:28dB输出功率:-20dBmKu-波段放大器中心频率:13~18GHz带宽:±250MHz增益:30dB噪声系数:<2dB输出功率: 20dBm  相似文献   

3.
产品介绍     
《微波学报》1995,11(3)
X—波段放大器中心频率:10GHz带宽:±500MHz增益:28dB输出功率: 20dBmKu—波段放大器中心频率:13~18GHz带宽:±250MHz增益:30dB噪声系数:<2dB输出功率: 20dBm微波、毫米波段高次倍频器倍频次数:×5、×6、×7倍频效率:5%杂波抑制:-40dB  相似文献   

4.
产品介绍     
《微波学报》1995,11(2)
X—波段放大器中心频率:10 GHz带宽:±500 MHz增益:28 dB输出功率; 20 dBmKu—波段放大器中心频率:13~18 GHz带宽:±250 MHz增益:30 dB噪声系数:<2 dB输出功率: 20 dBm微波、毫米波段高次倍频器倍频次数:×5、×6、×7倍频效率:5%杂波抑制:-40 dB  相似文献   

5.
本文利用比较符合实际的MESFET器件物理模型,采用集总元件匹配网络设计了单级和双级的x波段单片功率放大器。单级放大器中心频率为10.0GHz,带宽1.3GHz,线性输出功率126mW时,增益为5.2dB。双级放大器中心频率为9.4GHz,带宽0.8GHz,输出功率P_0≥1 00mW,增益G_p≥7dB,带内增益平坦度⊿G_p≤±0.5dB。较好的样品在9.6GHz下输出功率P_0≥250mW,G_p为9.4dB。  相似文献   

6.
S波段低噪声放大器设计   总被引:1,自引:0,他引:1  
首先分析了低噪声放大电路的稳定性,功率增益及噪声系数的影响因素及改进方法;然后设计了一个中心频率为2.45 GHz,工作带宽为100MHz的S波段低噪声放大器.仿真结果表明,该放大器的噪声系数小于1 dB,功率增益大于28 dB,增益平坦度小于1 dB,输入/输出驻波比小于2:1.通过传统的电路板制作工艺实际制作了放大器电路,测试结果和仿真结果较一致.  相似文献   

7.
设计了D波段直接检波式辐射计前端,主要包括D波段检波器模块、D波段低噪声放大器模块和D波段标准增益喇叭天线.基于商用零偏二极管HSCH-9161研制出D波段检波器,测试结果显示在D波段内,最高灵敏度接近1 600 mV/mW,当频率小于140 GHz时,灵敏度大于400 mV/mW,在大于140 GHz频段内,灵敏度优于120 mV/mW.基于自研D波段低噪声放大器芯片研制出D波段低噪放模块,测试结果显示最大增益为10.8 dB@139 GHz,在137~144 GHz频率范围内,增益大于7.8 dB,输入端回波损耗优于5 dB,输出端回波损耗优于8.5 dB.最终搭建D波段直接检波式辐射计前端进行成像实验验证.  相似文献   

8.
设计和制造了频率覆盖范围8~18GHz的宽带单片低噪声放大器。通频带内,其噪声系数小于4.3dB,相关增益8.5dB。新设计的低噪声放大器用于W波段(75~110GHz)接收机作为中频放大器。该放大器的射频性能适用范围宽,并且可以作为廉价的增益功能块。  相似文献   

9.
程骏  李海华 《电子器件》2013,36(2):206-210
基于Siemens的NPN射频晶体管BFP420,设计出一款适合于S波段的低噪声放大器,本设计使用了宽带匹配技术,结合微带线和集总元件设计出宽带的匹配网络。放大器适用频率范围:1.8 GHz~3.2 GHz,可用带宽1.4 GHz,相对带宽56%,属超宽带低噪声放大器。测试结果表明,在可用频段范围内,放大器增益波动3.7 dB,输入驻波比VSWR<1.8 dB,输出驻波比VSWR<1.295 dB;1.8 GHz增益G=12.53 dB、噪声系数NF=1.128 dB;3.2 GHz增益G=8.79 dB、噪声系数NF=1.414dB。本设计可满足无线蓝牙、WIFI,Zigbee等多种2.4 GHz主流ISM无线设备的应用要求。  相似文献   

10.
报道了全平面C波段功率单片放大器及四单片合成放大器研究结果。单片放大器采用全离子注入工艺,均匀性好,平均成品率40%,可靠性高。工作频率4.7—5.2GHZ,中心频率5.0GHz处输出功率2.5W,增益15dB,功率附加效率31.5%。单片放大器芯片面积2.8mm×2.0mm,四路合成的4×MMIC频率范围不变,中心频率4.95GHz处输出功率8.2W,增益13dB,功率附加效率26%,四路合成效率接近80%。实验结果与理论预测基本吻合。  相似文献   

11.
提出一种S/X双波段双极化共口径天线阵的新设计,以紧凑的三层结构实现了1:3的频率比.X波段采用双层贴片,并在下层贴片上开缝以提高其极化端口间的隔离度.S波段采用缝隙,刻蚀在X波段贴片的地板上,从而减少了阵列层数,简化了天线结构.仿真结果验证了本设计的有效性.X波段的相对阻抗带宽(S11≤-10dB)达15.5%(中心频率为9.6GHz),频带内隔离度大于25dB的带宽为1.2GHz,隔离度最大值达40dB.S波段为单层结构,相对阻抗带宽为5.5%(中心频率为3.3GHz).频带内隔离度优于27dB.试验阵列双波段交叉极化电平均低于-30dB.  相似文献   

12.
介绍了一种D波段连续波行波管放大器。该行波管采用了高压缩比皮尔斯会聚电子枪、折叠波导慢波结构(FWSWS)、蓝宝石输能盒形窗、周期永磁聚焦系统、集中衰减器以及一级降压收集极,经过装配、焊接、排气、磁场调试等过程,得到了D波段连续波放大器样管,并进行了流通率的调试和信号放大的测试。实验测试结果为:电子电压15.4 kV,电子流通率97%时,连续波输出功率7.3 W,中心频率140.2 GHz,增益24.6 dB,3 dB带宽3 GHz。该放大器连续运行稳定,满足工程化要求。  相似文献   

13.
利用90nmInAlAs/InGaAs/InPHEMT工艺设计实现了两款D波段(110~170GHz)单片微波集成电路放大器.两款放大器均采用共源结构,布线选取微带线.基于器件A设计的三级放大器A在片测试结果表明:最大小信号增益为11.2dB@140GHz,3dB带宽为16GHz,芯片面积2.6mm×1.2mm.基于器件B设计的两级放大器B在片测试结果表明:最大小信号增益为15.8dB@139GHz,3dB带宽12GHz,在130~150GHz频带范围内增益大于10dB,芯片面积1.7mm×0.8mm,带内最小噪声为4.4dB、相关增益15dB@141GHz,平均噪声系数约为5.2dB.放大器B具有高的单级增益、相对高的增益面积比以及较好的噪声系数.该放大器芯片的设计实现对于构建D波段接收前端具有借鉴意义.  相似文献   

14.
本文描述了三级和四级单片GaAs功率FET放大器的设计、制造和性能表征。每个放大器芯片的尺寸为1mm×4mm。概述了这些单片放大器的工艺。用一个四级放大器在接近9GHz的频率下,以27dB的增益获得了高达1W的输出功率。所采用的电路布局十分灵活,它允许外接键合引线用作为旁路电感器而使放大器在C波段或S波段工作。用一个改进的四级放大器,在3.5GHz下以28dB的增益得到2W的输出功率,其功率附加效率为36.6%。  相似文献   

15.
利用微波Office软件仿真设计了一种C波段低成本带阻型低噪声放大器,为了实现低噪声系数和小的电压驻波比,文中采用平衡式两级场效应管放大.通过采用一个带阻滤波器滤波,使得电路在通带低端附近有20 dB以上的增益抑制,加上一级单片放大,总增益大于30 dB.实验结果为:在4.8 GHz~5.25 GHz频率范围内,增益为34.9 dB,噪声系数<1.03 dB,带内增益平坦度<0.38 dB,输入驻波比<1.20,输出驻波比<1.15.在4.4 GHz~4.65 GHz频率范围内,增益抑制>21 dB.  相似文献   

16.
为了在 Ka波段实现高效率的功率合成,提出了一种具有很好的幅值相位特性的新型3路功率分配器,有利于提高固态放大器合成效率。研发了一种中心频率35 GHz 的双探针波导微带过渡结构,在32 GHz~38 GHz 反射系数低于-25 dB。在此基础上设计了一种6路功率分配合成模块,结果显示在31 GHz~39 GHz范围内,该模块反射系数低于-20 dB,插入损耗约为0.2 dB,合成效率接近95%。  相似文献   

17.
本文分析和研究了微波有源环行器所用的基本单元电路——放大器和定向耦合器.利用微波CAD欢件完成了放大器、定向耦合器和有源环行器的设计.模拟分析得出:在3.8~4.2GHz频率范围内,单片放大器的正向增益是6dB.反向隔离度为22dB:单片定向耦合器的正向插入损耗是4dB,反向隔离度为18dB.该有源环行器的隔离度是19dB,正向插损是5dB.实验结果为:放大器在3.5~4.0GHz频率范围内,正向增益是4.5dB,反向隔离度是23dB;定向耦合器在3.2~3.8GHz频率范围内,正向插入损耗是8dB,反向隔离度为23dB.  相似文献   

18.
基于IHP 0.13 μm SiGe BiCMOS工艺,设计了一种工作于D波段的高增益低噪声放大器。该放大器由两级Cascode 结构和一级共发射极结构组成。利用发射极退化电感来同时实现噪声抑制和功率匹配,利用微带线进行输入输出匹配和级间匹配,采用增益提升技术来提高前两级Cascode结构的增益。仿真结果表明,该放大器在中心频率140 GHz处实现了32 dB的增益,在125~148 GHz范围内均达到30 dB以上的增益,在相同频率范围内实现了小于6 dB的噪声系数,直流功耗仅为26 mW,芯片尺寸为610 μm×340 μm。该放大器具有低噪声和高增益的特点。  相似文献   

19.
针对目前X波段低噪声放大器的电路拓扑结构不易选择,故提出了一种采用微带分支线匹配结构和三级级联方式的X波段低噪声放大器(LNA)。放大器选用NEC低噪声放大管NE3210S01,利用ADS(Advanced Design System)软件设计、仿真、优化,放大器实测结果表明:在9.2 GHz~9.6 GHz频带内,噪声系数小于1.7 dB,带内增益达到33.5 dB,带内增益平坦度ΔG≤±0.3 dB,输入、输出驻波比均小于1.5。该放大器已应用于X波段接收机,效果良好,其设计方法可供工程应用参考。  相似文献   

20.
报道了一种采用电子束直写70nm"Y"型栅工艺制备的GaAs MHEMT器件及W波段低噪声放大器。器件的最大跨导可达到1 050mS/mm,最大电流密度可达650mA/mm。通过小信号S参数测试,可外推其电流增益截至频率fT及最大振荡频率fmax分别达350GHz及470GHz。采用该工艺制备的W波段低噪声放大器,在86~96GHz频段可实现噪声系数小于3dB,增益大于20dB。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号