首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
短剑麻纤维增强聚苯乙烯复合材料的拉伸性能   总被引:5,自引:0,他引:5  
彭学成 《国外塑料》1997,15(4):28-38
研究了短剑麻纤维和苯甲酰化剑麻纤维增强聚苯乙烯的拉伸性能,评价了剑麻纤维长度,含量,取向及苯甲酰作用对这种复合材料拉伸性能的影响。  相似文献   

2.
采用真空干燥箱对剑麻纤维进行预处理,并与聚乳酸(PLA)复合制备了剑麻纤维含量为50%的全降解环保型复合材料。研究了真空条件下剑麻纤维热处理温度、热处理时间对剑麻纤维成分、结构和复合材料性能的影响,并通过红外光谱和扫描电镜分析其作用机理。结果表明:在真空条件下,热处理使剑麻结构发生变化,半纤维素降解,改善了界面结合能力,且适宜的热处理温度、热处理时间有利于复合材料力学性能的提高。  相似文献   

3.
刹车片用酚醛树脂摩擦复合材料研究进展   总被引:1,自引:0,他引:1  
综述了国内外刹车片用酚醛树脂摩擦复合材料的研究进展,重点介绍了酚醛树脂基体材料的耐热、增韧改性方法,包括化学改性和共混改性。对提高摩擦材料综合性能的各种增强纤维(如碳纤维、芳纶纤维、钛酸钾纤维)也作了简介,并概述了摩擦性能调节剂对材料摩擦性能的影响。最后指出混杂纤维已成为纤维增强体的一个发展趋势,安全、舒适、性能稳定、使用寿命长、环保无噪音将是刹车片用酚醛树脂基摩擦复合材料今后的发展方向。  相似文献   

4.
采用碱、蒸汽爆破等对剑麻纤维进行预处理,考察了不同预处理方法对剑麻纤维增强热塑性淀粉力学性能及降解性能的影响。结果表明:碱处理能够提高复合材料的力学性能,延长材料降解周期,是制备剑麻纤维增强热塑性淀粉复合材料有效的预处理方法;剑麻纤维增强热塑性淀粉的机理是甘油在淀粉及剑麻纤维之间起到桥梁作用,提高了热塑性淀粉与剑麻纤维的界面结合力,从而提高了复合材料的力学性能。  相似文献   

5.
剑麻纤维/酚醛树脂复合材料研究   总被引:20,自引:5,他引:20  
本文采用碱处理、硅烷偶联剂处理、化学接枝和热处理等物理化学方法,对剑麻纤维进行改性。研究了改性后短剑麻纤维/酚醛树脂复合材料的弯曲性能、无缺口冲击强度和布氏硬度,借助扫描电子显微镜观察了复合材料的弯曲断口形貌,并研究了剑麻纤维的不同处理方法对复合材料耐水浸泡性的影响。结果表明:剑麻纤维经硅烷偶联剂处理后,能有效改善刚性的剑麻纤维与脆性的酚醛树脂基体之间的粘结,从而提高了复合材料的综合力学性能,剑麻  相似文献   

6.
陈宣东  刘光焰  王晓峰  黄达 《硅酸盐通报》2018,37(11):3481-3486
剑麻纤维具有环保、经济、力学性能良好等特点,近些年备受水泥基复合材料研究学者青睐.剑麻纤维具有较高的抗拉性能,弥补水泥基复合材料的脆裂的缺点;在水泥基复合材料中掺入较少的剑麻纤维可以较大提高水泥基复合材料抗拉性能和韧性.总结了剑麻纤维增强水泥基复合材料中剑麻纤维表面处理、制作工艺、宏观力学性能、微观结构的研究现状、未来发展动向、经济效益,并对剑麻纤维目前存在问题做了总结以及前景展望.  相似文献   

7.
为了研究剑麻纤维增强珊瑚混凝土的抗压强度回归方程,本文利用超声回弹综合法和混凝土抗压试验,通过对掺有3 kg/m3剑麻纤维的珊瑚混凝土和未掺剑麻纤维的珊瑚混凝土试件分别进行试验,分别建立该试验中剑麻纤维珊瑚混凝土的超声声速、回弹代表值与抗压强度的之间的相关关系,给出该试验中相应的强度曲线,便于实际中为与剑麻纤维珊瑚混凝土抗压强度相关的研究提供参考。  相似文献   

8.
剑麻纤维树脂基复合材料研究和展望   总被引:7,自引:1,他引:6  
介绍剑麻纤维树脂基复合材料国内外研究现状和展望,重点介绍了剑麻纤维/不饱和聚酯树脂,剑麻纤维/环氧树脂,剑麻纤维/LDPE,剑麻纤维/玻纤/PVC等复合材料的物理力学性能。  相似文献   

9.
最新专利     
<正>高性能汽车陶瓷刹车片(CN 200910060675.4)一种高性能汽车陶瓷刹车片,由下列组分按质量百分比制成:陶瓷纤维7%~11%、喷胶硅酸铝纤维7%~9%、聚丙烯腈纤维5%~8%、芳纶纤维2%~3%、紫铜纤维7%~9%、针状硅灰石纤维7%  相似文献   

10.
徐子勤  杨智荣  马亮 《陶瓷》2020,(4):52-55
笔者介绍了陶瓷基刹车片增强纤维、矿物填料和粘结剂各组分的性能和作用,并叙述了试样的原料配比、试验过程及生产工艺。清洁环保型高稳定摩擦性能陶瓷基刹车片,不含金属成分,使用寿命长,高温性能稳定,是技术先进的产品。  相似文献   

11.
房昆 《工程塑料应用》2012,40(4):100-103
介绍了剑麻纤维(SF)的结构特点、物理力学性能以及纤维改性处理方法,从纤维形态及增强基质出发综述了长、短SF及SF混杂纤维增强复合材料以及SF增强热塑性、热固性树脂和弹性体复合材料方面的研究与开发,指出了SF增强复合材料今后的研究方向。  相似文献   

12.
采用改性酚醛树脂为基体,剑麻/钢纤维混杂为增强纤维,通过辊炼、模压成型工艺制备了剑麻/钢纤维增强酚醛树脂复合材料.研究了剑麻纤维的加入及含量对聚砜改性酚醛树脂复合材料力学性能、摩擦磨损性能及热稳定性能的影响.结果表明:剑麻纤维质量分数为15%、钢纤维为10%时,复合材料的冲击和弯曲强度分别为3.82 kJ/m2和59.6 Mpa,达到最大;随着剑麻纤维含量的增加,复合材料的摩擦系数降低,热稳定性能下降,当剑麻纤维质量分数为10%时,复合材料的摩擦性能优异;复合材料的磨损面呈现黏着磨损和疲劳磨损特征.  相似文献   

13.
本发明属于新材料领域,特别是涉及一种适用于制作汽车和火车刹车片的碳纤维增强摩阻材料及其制备方法。本发明的碳纤维增强摩阻材料由增强纤维、基体树脂、摩擦性能调节剂组成,其特征是增强纤维为碳纤维、金属纤维和无机矿物纤维的混合物,基体树脂是水乳胶改性酚醛树脂,摩擦性能调节剂采用硫酸钡、三氧化二铁、四氧化三铁、三氯化铁、氧化镁、二氧化硅中的至少两种:制备方法包含混料工序、预烘工序、压制工序和后处理工序。该碳纤维增强摩阻材料摩阻性能良好而且制备过程无污染。  相似文献   

14.
付武昌  吴宏武 《塑料工业》2014,42(9):105-108,112
依据丙交酯配位开环反应原理,在剑麻纤维表面接枝上聚乳酸分子支链进行表面改性,并与未处理、碱处理表面改性对比,研究了表面改性方法对剑麻纤维热性能的影响。使用熔体共混模压成型工艺制备了改性剑麻纤维增强聚乳酸复合材料,并研究了不同表面改性方法对复合材料热性能的影响。结果表明,剑麻纤维的加入使得复合材料的热稳定性略有降低,其中碱处理略高于未处理,而接枝处理降幅最大。同时,纤维的加入有利于复合材料异相成核,提高结晶度,其中以接枝剑麻纤维的促进作用最为突出。  相似文献   

15.
王雪  翟颠颠  郭远臣  王智  赵婷  刘俊 《硅酸盐通报》2017,36(7):2488-2491
植物纤维作为一种可再生、价格低廉、来源广泛的资源,其在混凝土中的应用具有很好的前景.运用简单的力学实验,综合分析纤维的掺量、长径比对混凝土强度的影响,采用不同掺量的纤维,验证了剑麻纤维在增强混凝土抗压强度等基本力学性能方面的机理.结果表明:(1)剑麻纤维的加入会在一定程度上增强混凝土的抗压强度.(2)最佳掺量为2 kg/m3,与普通混凝土相比,剑麻纤维混凝土强度最大提升幅度为9%左右.  相似文献   

16.
剑麻纤维的表面改性及其复合材料的研究进展   总被引:21,自引:0,他引:21  
简述了剑麻纤维的组成、结构及力学性能,并总结了剑麻纤维表面改性的几种方法,包括物理方法:热处理、酸碱处理、有机溶剂处理;化学方法:改变表面张力、界面偶合、表面接枝聚合。同时论述了剑麻纤维的表面改性对复合材料力学性能的影响。  相似文献   

17.
剑麻纤维增强聚氯乙烯复合材料工艺与性能的研究   总被引:10,自引:1,他引:9  
本文通过对剑麻纤维和聚氯乙烯基体改性,并变化成型参数,来研究它们对形成的复合材料力学性能和耐水性的影响,从而制订出剑麻纤维/聚氯乙烯复事材料的最佳成型工艺。  相似文献   

18.
由长春应用化学研究所研制的聚酰亚胺半金属轿车刹车片日前通过了国家汽车质量检验中心的鉴定。鉴定意见称,这种刹车片制动性能好,耐热耐磨,达到了国际先进水平。目前,国内外市场上的汽车刹车片主要是由酚醛树脂、增强纤维及各种矿物填料复合制成、酚醛树脂是最古老的合成材料之一,耐热性和力学性能已不适应快速发展中的汽  相似文献   

19.
实验研究了天然椰壳纤维作为增强体的椰壳纤维/聚丙烯(PP)复合材料的物理性能,与纯PP材料的物理性能进行了对比。利用有限元软件Abaqus对其应用于汽车内饰的可行性进行研究。结果表明:椰壳纤维作为增强体与PP复合的增强材料具有良好的力学性能,可以满足汽车内饰材料中安全气囊盖板的性能要求,具有作为汽车内饰材料的可能性。  相似文献   

20.
郑海波  陈晋阳 《中国橡胶》2011,27(20):21-23
一、目前汽车用纯芳纶纤维增强胶管存在的粘合问题 纤维作为骨架材料越来越广泛地应用于汽车胶管中,所用的纤维种类有棉纤维、涤纶、维纶、锦纶、芳纶纤维等。随着汽车工业的飞速发展,汽车零件装配得越来越紧凑,发动机舱的空间越来越小,因此对汽车胶管的耐热、耐压要求也越来越高,随之对增强骨架层的耐热及强度要求也越来越高.现国内知名汽车主机厂越来越多地要求使用芳纶纤维材料作为增强层。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号