首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Site-directed mutagenesis was used to assess the role of transmembrane (TM)-charged amino acids in the expression and function of the G protein-coupled receptor for PTH and PTH-related protein (PTHrP). Charged residues that are conserved in the TM regions of most or all members of the PTH/secretin receptor subfamily were targeted. Four mutants (E296A, R337A, H414A, and E459K) displayed properties similar to the wild type PTH/PTHrP receptor with respect to agonist binding and stimulation of adenylyl cyclase when expressed in COS-7 cells. Several mutations, all in TM II, produced receptors that signaled extremely poorly. Mutation of three residues (227S, 230R, and 233S), predicted to be aligned on one helical face of TM II, displayed a similar phenotype: markedly blunted adenylyl cyclase activity in response to PTH (20-30% of the wild type response) and a lower binding affinity for agonist, with no reduction in cell surface receptor expression. These results suggest that TM II contains a polar face that is involved in TM signaling by the PTH/PTHrP receptor. Two of these mutations were made at the corresponding sites in the secretin receptor, and a similar reduction in secretin-stimulated adenylyl cyclase activity was observed. Thus this region of TM II may participate in a mechanism of TM signal transduction that is shared by the PTH/secretin sub-family of G protein-coupled receptors.  相似文献   

2.
We have studied the in vitro effect of sodium saccharin (NaSacch) on the rat adipocyte adenylyl cyclase complex. NaSacch (2.5-50 mM) inhibited significantly in a dose-dependent manner basal and isoproterenol-stimulated cAMP accumulation on isolated rat adipocytes. Similarly, NaSacch (2.5-50 mM) inhibited forskolin-stimulated adenylyl cyclase activity measured in the presence of Mg(2+)-ATP on adipocyte, astrocyte and thyrocyte membrane fractions. In contrast, NaSacch did not inhibit but slightly increased the forskolin-stimulated adenylyl cyclase activity measured in the presence of Mn(2+)-ATP and GDP beta S, a stable GDP analogue. The effect of NaSacch was not mediated through either the A1-adenosine receptor (A1R) or the alpha 2-adrenergic receptor (alpha 2AR). The inhibitory effect of NaSacch was additive to that of A1R agonist and was not blocked by the addition of the alpha 2AR antagonist RX 821002. Pretreatment of adipocytes with pertussis toxin slightly attenuated but did not abolish the inhibitory effect of NaSacch on forskolin-stimulated adenylyl cyclase activity on membrane fractions. These data suggest that the inhibitory effect of NaSacch on forskolin stimulated-adenylyl cyclase in adipocytes does not imply only Gi protein but also other direct or indirect inhibitory pathway(s) which remain to be determined.  相似文献   

3.
4.
X-linked nephrogenic diabetes insipidus (NDI) is a rare disease with defective renal and extrarenal arginine vasopressin V2 receptor responses due to mutations in the AVPR2 gene in Xq28. To study the cause of loss of function of mutant V2 receptors, we expressed 12 mutations (N55H, L59P, L83Q, V88M, 497CC-->GG, deltaR202, I209F, 700delC, 908insT, A294P, P322H, P322S) in COS-7 cells. Eleven of these, including P322H, were characterized by a complete loss of function, but the mutation P322S demonstrated a mild clinical and in vitro phenotype. This was characterized by a late diagnosis without any growth or developmental delay and a significant increase in urine osmolality after intravenous 1-deamino[D-Arg8]AVP administration. In vitro, the P322S mutant was able to partially activate the Gs/adenylyl cyclase system in contrast to the other V2R mutants including P322H, which were completely inactive in this regard. This showed not only that Pro 322 is important for proper V2R coupling, but also that the degree of impairment is strongly dependent on the identity of the substituting amino acid. Three-dimensional modeling of the P322H and P322S mutant receptors suggested that the complete loss of function of the P322H receptor could be due, in part, to hydrogen bond formation between the His 322 side chain and the carboxyl group of Asp 85, which does not occur in the P322S receptor.  相似文献   

5.
We report here a study of photoaffinity labeling of the V1a-vasopressin receptor with high-affinity, V1-specific radioiodinated antagonist ligands: one containing an azidophenylalanine residue ([beta,beta-dimethyl-beta-mercaptopropionyl(1), p-azido-Phe2,Val4,Lys8,D-Tyr9] vasopressin), two others containing nitrophenylalanine, and one, highly similar but without a photosensitive function, as control. All analogues competed in the dark for the same binding site with vasopressin. Long-wavelength UV irradiation of rat liver membranes incubated in presence of the radio-iodinated azido photolabel produced a specifically labeled protein band at 53 kDa in SDS-PAGE. Identical experiments with the nitrophenylalanyl peptides produced only non-specific labeling and control experiments with the non-photosensitive analogue produced no labeling at all. Chemical crosslinking of 3H-VP to the same membrane preparation produced a result identical to that of the azido photolabel, confirming the receptor nature of the labeled protein. Deglycosylation of the labeled receptor with endoglycosidase F reduced the observed molecular weight of 53 kDa to 43 kDa. The molecular parameters reported herein of the presumed hepatic vasopressin receptor confirm the values deduced from the molecular cloning of the rat V1a receptor.  相似文献   

6.
In NG108-15 cells inhibition of both N-type calcium channel current and adenylyl cyclase by somatostatin (SRIF) was not sustained but rapidly desensitized in the continued presence of the drug. The degree and rate of desensitization were concentration-dependent, and the desensitization was homologous with respect to the delta-opioid receptor. We have been unable to obtain evidence for the involvement of G protein-coupled receptor kinases (GRKs) in this desensitization. SRIF-induced desensitization of N-type calcium channel currents was not reduced in cells stably overexpressing a dominant negative mutant of GRK2 or following intracellular dialysis with GRK2- and GRK3-blocking peptides or with heparin. Inhibitors of protein kinase A, protein kinase C, and protein kinase G were also without effect. In contrast, both the rate and degree of SRIF-induced desensitization were reduced by pretreatment with phenylarsine oxide or concanavalin A, both inhibitors of receptor endocytosis. Furthermore, SRIF-induced desensitization was enhanced by monensin, which prevents receptor recycling back to the plasma membrane. Similarly, SRIF-induced desensitization of adenylyl cyclase inhibition was not reduced in cells stably overexpressing dominant negative mutant GRK2 but was reduced in cells pretreated with the receptor endocytosis inhibitor hyperosmotic sucrose or concanavalin A. These data are consistent with the view that SRIF-induced desensitization in NG108-15 cells results from receptor internalization.  相似文献   

7.
The human V2 vasopressin receptor belongs to the superfamily of G protein-coupled receptors believed to be anchored to the plasma membrane by seven transmembrane regions. The extracellular portion of the human V2 vasopressin receptor contains one site susceptible to N-linked glycosylation. Metabolic labeling and immunoprecipitation of the receptor expressed in transfected cells were applied to examine whether the protein was indeed glycosylated. The V2 vasopressin receptor expressed transiently was glycosylated, but glycosidase treatment to test the complexity of the sugar moiety linked to asparagine revealed that the majority of the receptor protein lacked complex carbohydrates, an indication of an improperly processed protein. This immature protein displayed a tendency to form aggregates. In contrast with these data, testing of the sugar complexity of the receptor protein synthesized in stably transfected cells identified the predominant form as an appropriately processed receptor protein. Mutagenesis of asparagine 22 to glutamine produced on expression in transfected cells a nonglycosylated receptor with ligand binding affinity and coupling characteristics almost identical to those of the wild-type form. After exposure to elevated concentrations of AVP (100 nM), the nonglycosylated form desensitized to the same extent as the wild-type receptor.  相似文献   

8.
Adenylyl cyclase superactivation, a phenomenon by which chronic activation of inhibitory Gi/o-coupled receptors leads to an increase in cAMP accumulation, is believed to play an important role as a compensatory response of the cAMP signaling system in the cell. However, to date, the mechanism by which adenylyl cyclase activity is regulated by chronic exposure to inhibitory agonists and the nature of the adenylyl cyclase isozymes participating in this process remain largely unknown. Here we show, using COS-7 cells transfected with the various AC isozymes, that acute activation of the D2 dopaminergic and m4 muscarinic receptors inhibited the activity of adenylyl cyclase isozymes I, V, VI, and VIII, whereas types II, IV, and VII were stimulated and type III was not affected. Conversely, chronic receptor activation led to superactivation of adenylyl cyclase types I, V, VI, and VIII and to a reduction in the activities of types II, IV, and VII. The activity of AC-III also was reduced. This pattern of inhibition/stimulation of the various adenylyl cyclase isozymes is similar to that we recently observed on acute and chronic activation of the mu-opioid receptor, suggesting that isozyme-specific adenylyl cyclase superactivation may represent a general means of cellular adaptation to the activation of inhibitory receptors and that the presence/absence and intensity of the adenylyl cyclase response in different brain areas (or cell types) could be explained by the expression of different adenylyl cyclase isozyme types in these areas.  相似文献   

9.
GABAB receptor activation inhibits forskolin-stimulated adenylyl cyclase activity but augments noradrenaline-stimulated adenylyl cyclase activity. The present study investigated the pharmacology of these two GABAB receptor mediated responses. In a cross-chopped rat cortical slice preparation, it was confirmed that (-)baclofen inhibited forskolin-stimulated adenylyl cyclase activity and augmented noradrenaline-stimulated adenylyl cyclase activity. The potency of five further agonists was investigated (SKF97541, CGP47656, CGP44533, 3-APA and CGP44532). Of these agonists two compounds were significantly more potent as inhibitors of forskolin-stimulated adenylyl cyclase than as augmenters of noradrenaline-stimulated adenylyl cyclase activity, these were (-)baclofen (pEC50 = 6.07 +/- 0.29 and 5.04 +/- 0.17, respectively (p < 0.05)), and CGP47656 (pEC50 = 6.44 +/- 0.05 and 4.48 +/- 0.26, respectively (p < 0.05)). It is possible to explain this difference in potency by proposing that these compounds have low intrinsic efficacy, and the augmentation of noradrenaline-stimulated adenylyl cyclase has a low receptor reserve. In addition six antagonists (CGP49311A, CGP46381, CGP45024, CGP45397, CGP36742) were also tested for their ability to antagonize 10 microM (-)baclofen in these two assays. These antagonists ranged in potency as inhibitors of forskolin-stimulated adenylyl cyclase activity from CGP49311A (pEC50 = 5.45 +/- 0.30) to CGP36742 (pEC50 = 3.87 +/- 0.16). Each antagonist had similar potency in the two assays, suggesting that these two responses are mediated by pharmacologically similar receptors.  相似文献   

10.
In the present studies, we have investigated the modulation of atrial natriuretic peptide (ANP) receptor of R2 subtype (ANP-R2/ANP-C) coupled to adenylyl cyclase/cAMP signal transduction system by angiotensin II (angII). C-ANF4-23 [des(Gln18, Ser19, Gln20, Leu21, Gly22)ANF4-23-NH2] and AngII inhibited adenylyl cyclase activity in a concentration-dependent manner in vascular smooth muscle cells (VSmc A-10). The maximal inhibitions observed were about 40 and 30%, respectively, with an apparent Ki of about 1 and 10 nm. Pretreatment of the cells with AngII resulted in the attenuation of both C-ANF4-23 and AngII-mediated inhibitions of adenylyl cyclase, without altering [125I]-ANF binding. The levels of Gialpha-2 and Gialpha-3 proteins as determined by immunoblotting were also augmented by AngII treatment. In addition, AngII treatment stimulated the phosphorylation of Gialpha2 but not of Gialpha3 or ANP-C receptor, as revealed by immunoprecipitation of the proteins using specific antibodies after prelabelling the cells with [32P]orthophosphate. Staurosporine and chelerythrine, protein kinase C (PKC) inhibitors at 1 and 100 nm, respectively, prevented the AngII-mediated desensitization of C-ANF 4-23-sensitive adenylyl cyclase. In addition, the AngII-mediated phosphorylation of Gialpha2 protein was also inhibited partially by about 35% by staurosporine treatment. These results suggest that the attenuation of C-ANF4-23-mediated inhibition of adenylyl cyclase activity by AngII may not be attributed to the downregulation of receptors or to the decreased levels of G-proteins, and may involve PKC-dependent mechanisms.  相似文献   

11.
The stimulatory G protein alpha subunit Gsalpha binds within a cleft in adenylyl cyclase formed by the alpha1-alpha2 and alpha3-beta4 loops of the C2 domain. The pseudosymmetry of the C1 and C2 domains of adenylyl cyclase suggests that the homologous inhibitory alpha subunit Gialpha could bind to the analogous cleft within C1. We demonstrate that myristoylated guanosine 5'-3-O-(thio)triphosphate-Gialpha1 forms a stable complex with the C1 (but not the C2) domain of type V adenylyl cyclase. Mutagenesis of the membrane-bound enzyme identified residues whose alteration either increased or substantially decreased the IC50 for inhibition by Gialpha1. These mutations suggest binding of Gialpha within the cleft formed by the alpha2 and alpha3 helices of C1, analogous to the Gsalpha binding site in C2. Adenylyl cyclase activity reconstituted by mixture of the C1 and C2 domains of type V adenylyl cyclase was also inhibited by Gialpha. The C1b domain of the type V enzyme contributed to affinity for Gialpha, but the source of C2 had little effect. Mutations in this soluble system faithfully reflected the phenotypes observed with the membrane-bound enzyme. The pseudosymmetrical structure of adenylyl cyclase permits bidirectional regulation of activity by homologous G protein alpha subunits.  相似文献   

12.
An immunoprecipitation method was used to measure [32P]phosphate incorporation into the adenylyl cyclase VI protein in Chinese Hamster Ovary (CHO) cells stably expressing the human delta-opioid receptor. Chronic SNC 80 ((+)-4-[(alpha R)-alpha-((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N ,N-diethyl-benzamide) 1 microM, 24 h) treatment increased the incorporation of [32P] into a 200 kDa protein band 2.5-fold after gel electrophoresis. The increase in phosphorylation of adenylyl cyclase VI was antagonized by naltrindole (1 microM) and the immunoprecipitation was prevented by the saturation of the antibody with the blocking peptide.  相似文献   

13.
We previously showed that substitution of a glycine residue for the palmitoylated cysteine 341 of the human beta2-adrenergic receptor (Gly341beta2AR), increases the basal level of the receptor phosphorylation and reduces its ability to functionally interact with Gs. In the present study, we show that additional mutation of serines 345 and 346 (Ala345,346Gly341beta2AR) restored normal phosphorylation and receptor-Gs coupling, thus suggesting that the increased phosphorylation of this site, rather than the lack of palmitoylation per se, is responsible for the poor coupling of the unpalmitoylated receptor. This is supported by the observation that chemical depalmitoylation of purified beta2AR did not affect the ability of the receptor to stimulate adenylyl cyclase in reconstitution assays. Furthermore, mutation of Ser345,346 in a wild type receptor background (Ala345,346beta2AR) significantly decreased the rate of agonist-promoted desensitization of the receptor-stimulated adenylyl cyclase activity, supporting a role for this phosphorylation site in regulating the functional coupling of the receptor. Since serines 345 and 346 are located in a putative cyclic AMP-dependent protein kinase (PKA) phosphorylation site immediately downstream of the palmitoylated cysteine 341, the hypothesis that the accessibility of this site may be regulated by the receptor palmitoylation state was further assessed in vitro. In membrane phosphorylation assays, Gly341beta2AR was found to be a better substrate for PKA than the wild type receptor, thus supporting the notion that palmitoylation restrains access of the phosphorylation site to the enzyme. Taken together, the data demonstrate that palmitoylation of cysteine 341 controls the phosphorylation state of the PKA site located in the carboxyl tail of the beta2AR and by doing so modulates the responsiveness of the receptor.  相似文献   

14.
It has been known for some time that chronic treatment of neuronal cells and tissues with opioids, contrary to their acute effect, leads to an increase in cAMP accumulation. This phenomenon, defined as adenylyl cyclase superactivation, has been implicated in opiate addiction, yet the mechanism by which it is induced remains unclear. Here, we show that this phenomenon can be reproduced and studied in COS-7 cells cotransfected with adenylyl cyclase type V and mu-opioid receptor cDNAs. These cells display acute opioid inhibition of adenylyl cyclase activity, whereas prolonged exposure to the mu-agonist morphine or [-Ala2, N-methyl-Phe4, Gly-ol5]enkephalin leads to a time-dependent superactivation of adenylyl cyclase. This superactivated state is reversible, because it is gradually lost following agonist withdrawal. Adenylyl cyclase superactivation can be prevented by pertussis toxin pretreatment, indicating the involvement of Gi/o proteins, or by cotransfection with the carboxyl terminus of beta-adrenergic receptor kinase or with alpha-transducin (scavengers of Gbetagamma dimers), indicating a role for the G protein betagamma dimers in adenylyl cyclase superactivation. However, contrary to several other Gbetagamma-dependent signal transduction mechanisms (e.g. the extracellular signal-regulated kinase 2/MAP kinase pathway), adenylyl cyclase superactivation is not affected by the Ras dominant negative mutant N17-Ras.  相似文献   

15.
In the budding yeast Saccharomyces cerevisiae, association with the 70-kDa cyclase-associated protein (CAP) is required for proper response of adenylyl cyclase to Ras proteins. We show here that a small segment comprising the N-terminal 36 amino acid residues of CAP is sufficient for association with adenylyl cyclase as well as for its function in the Ras-adenylyl cyclase pathway as assayed by the ability to confer RAS2(Val-19)-dependent heat shock sensitivity to yeast cells. The CAP-binding site of adenylyl cyclase was mapped to a segment of 119 amino acid residues near its C terminus. Both of these regions contained tandem repetitions of a heptad motif alphaXXalphaXXX (where alpha represents a hydrophobic amino acid and X represents any amino acid), suggesting a coiled-coil interaction. When mutants of CAP defective in associating with adenylyl cyclase were isolated by screening of a pool of randomly mutagenized CAP, they were found to carry substitution mutations in one of the key hydrophobic residues in the heptad repeats. Furthermore, mutations of the key hydrophobic residues in the heptad repeats of adenylyl cyclase also resulted in loss of association with CAP. These results indicate the coiled-coil mechanism as a basis of the CAP-adenylyl cyclase interaction.  相似文献   

16.
In search for novel actin binding proteins in Dictyostelium discoideum we have isolated a cDNA clone coding for a protein of approximately 50 kDa that is highly homologous to the class of adenylyl cyclase-associated proteins (CAP). In Saccharomyces cerevisiae the amino-terminal part of CAP is involved in the regulation of the adenylyl cyclase whereas the loss of the carboxyl-terminal domain results in morphological and nutritional defects. To study the interaction of Dictyostelium CAP with actin, the complete protein and its amino-terminal and carboxyl-terminal domains were expressed in Escherichia coli and used in actin binding assays. CAP sequestered actin in a Ca2+ independent way. This activity was localized to the carboxyl-terminal domain. CAP and its carboxyl-terminal domain led to a fluorescence enhancement of pyrene-labeled G-actin up to 50% indicating a direct interaction, whereas the amino-terminal domain did not enhance. In polymerization as well as in viscometric assays the ability of the carboxyl-terminal domain to sequester actin and to prevent F-actin formation was approximately two times higher than that of intact CAP. The sequestering activity of full length CAP could be inhibited by phosphatidylinositol 4,5-bisphosphate (PIP2), whereas the activity of the carboxyl-terminal domain alone was not influenced, suggesting that the amino-terminal half of the protein is required for the PIP2 modulation of the CAP function. In profilin-minus cells the CAP concentration is increased by approximately 73%, indicating that CAP may compensate some profilin functions in vivo. In migrating D. discoideum cells CAP was enriched at anterior and posterior plasma membrane regions. Only a weak staining of the cytoplasm was observed. In chemotactically stimulated cells the protein was very prominent in leading fronts. The data suggest an involvement of D. discoideum CAP in microfilament reorganization near the plasma membrane in a PIP2-regulated manner.  相似文献   

17.
In membranes of the rat frontal cortex, acetylcholine (ACh) and other cholinergic agonists were found to potentiate the stimulation of adenylyl cyclase activity elicited by corticotropin-releasing hormone (CRH). Oxotremorine-M, carbachol and methacholine were as effective as ACh, whereas oxotremorine and arecoline were much less effective. The facilitating effect of Ach was potently blocked by the M1 antagonists R-trihexyphenidyl, telenzepine and pirenzepine and by the M3 antagonists hexahydro-sila-difenidol and p-fluorohexahydro-sila-difenidol, whereas the M2 and M4 antagonists himbacine, methoctramine, AF-DX 116 and AQ-RA 741 were less potent. The mamba venom toxin MT-1, which binds with high affinity to M1 receptors, was also a potent blocker. The pharmacological profile of the muscarinic potentiation of CRH receptor activity was markedly different from that displayed by the muscarinic inhibition of forskolin-stimulated adenylyl cyclase, which could be detected in the same membrane preparations. Moreover, the intracerebral injection of pertussis toxin impaired the muscarinic inhibition of cyclic AMP formation and reduced the Ach stimulation of [35S]GTPgammaS binding to membrane G proteins but failed to affect the facilitating effect on CRH receptor activity. The latter response was also insensitive to the phospholipase C inhibitor U-73122, the protein kinase inhibitor staurosporine and to the inhibitors of arachidonic acid metabolism indomethacin and nordihydroguaiaretic acid. These data demonstrate that in the rat frontal cortex, muscarinic receptors of the M1 subtype potentiate CRH transmission by interacting with pertussis toxin-insensitive G proteins.  相似文献   

18.
An intriguing development in the G-protein signaling field has been the finding that not only the Galpha subunit, but also Gbetagamma subunits, affect a number of downstream target molecules. One of the downstream targets of Gbetagamma is adenylyl cyclase, and it has been demonstrated that a number of isoforms of adenylyl cyclase can be either inhibited or stimulated by Gbetagamma subunits. Until now, adenylyl cyclase type I has been the only isoform reported to be inhibited by free Gbetagamma. Here we show by transient cotransfection into COS-7 cells of either adenylyl cyclase V or VI, together with Ggamma2 and various Gbeta subunits, that these two adenylyl cyclase isozymes are markedly inhibited by Gbetagamma. In addition, we show that Gbeta1 and Gbeta5 subunits differ in their activity. Gbeta1 transfected alone markedly inhibited adenylyl cylcase V and VI (probably by recruiting endogenous Ggamma subunits). On the other hand, Gbeta5 produced less inhibition of these isozymes, and its activity was enhanced by the addition of Ggamma2. These results demonstrate that adenylyl cyclase types V and VI are inhibited by Gbetagamma dimers and that Gbeta1 and Gbeta5 subunits differ in their capacity to regulate these adenylyl cyclase isozymes.  相似文献   

19.
OBJECTIVE: Vasodilation by beta-adrenergic receptors of smooth muscle cells appears to be impaired early after the onset of hypercholesteremia. The aim of this study was to analyze the modulation of beta-adrenergic receptor density and adenylyl cyclase activity in the presence of moderately elevated concentrations of LDL. The effects of beta 1- and beta 2-adrenergic receptor antagonists on LDL-induced receptor changes were studied. METHODS AND RESULTS: Media explants of porcine coronary arteries were incubated with moderately elevated LDL concentrations (0.7-3.9 mmol/l). The density of beta-adrenergic receptors was determined in plasma membranes using the radioligand [125I]iodocyanopinodolol. LDL (3.9 mmol/l) resulted in a decrease of beta-adrenergic receptor density (control 137 +/- 5 vs. 89 +/- 7 fmol/mg protein, P < 0.01). After removal of LDL and cultivation for an additional 3 days beta-adrenergic receptors increased to 129 +/- 5 fmol/mg. In the presence of the beta 1- or beta 2-adrenergic receptor antagonists the LDL-mediated decrease was inhibited. Addition of metoprolol after 3 days of LDL incubation caused a restoration of receptor density. The basal, isoproterenol- and forskolin-stimulated adenylyl cyclase activities were increased after LDL incubation by 180, 110 or 80%, respectively. CONCLUSION: Moderately elevated LDL levels decreased beta-adrenergic receptor density while adenylyl cyclase activity was simultaneously increased. beta 1- or beta 2-adrenergic receptor antagonists prevented this receptor decrease and might preserve the beta-adrenergic receptor density in the presence of moderately elevated LDL levels.  相似文献   

20.
The human neuroblastoma cell line SK-N-BE expresses delta-opioid receptors negatively coupled to adenylyl cyclase. Prolonged treatment (2 h) of the cells with 100 nM etorphine leads to an almost complete desensitization (8.2 +/- 5.9 vs. 45.8 +/- 8.7% for the control). Other receptors negatively coupled to adenylyl cyclase, namely, D2-dopaminergic, alpha 2-adrenergic, and m2/m4-muscarinic, were identified by screening of these cells, and it was shown that prolonged treatment (2 h) with 1 microM 2-bromo-alpha-ergocryptine or 1 microM arterenol resulted in a marked desensitization of D2-dopaminergic and alpha 2-adrenergic receptors, respectively. Cross-desensitization experiments revealed that pretreatment with etorphine desensitized with the same efficiency the delta-opioid receptor and the D2-dopaminergic receptor, and pretreatment with 2-brorno-alpha-ergocryptine also desensitized both receptors. In contrast, pretreatment with etorphine desensitized only partly the alpha 2-adrenergic receptor response, whereas pretreatment with 1 microM arterenol partly desensitized the delta-opioid receptor response. It is concluded that the delta-opioid receptor-mediated inhibitory response of adenylyl cyclase undergoes heterolgous desensitization, and it is suggested that delta-opioid and D2-dopaminergic receptors are coupled to adenylyl cyclase via a G12 protein, whereas alpha 2-adrenergic receptor could be coupled to the enzyme via two G proteins, G12 and another member of the G1/G0 family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号