首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This research studies the impact of the imagination of movements and associated feedbacks on the modulation of sensorimotor electroencephalographic (EEG) rhythms, for the online controls of a brain-computer interface (BCI). Nine subjects with no physical or mental impairments were selected. The number of sessions was five: one calibration and four feedback sessions. A computer screen’s cursor movement was controlled in one dimension using EEG-based four-class BCI involving motor imagery tasks of moving the right hand, the left hand, both hands, or both feet. Our findings reveal that the visual feedback applied during motor imagery movement modulates sensorimotor EEG rhythms clearly in the mu and beta bands. The analyses of event-related desynchronization/synchronization (ERD/ERS) suggest significant differences between brain activities in the calibration and feedback sessions; large ERDs during the online feedback sessions compared to that in the calibration session have been observed. The increasing ERDs in the online feedback session were noticed over the mu1 (8–10 Hz) and upper beta (18–24 Hz) rhythms, resulting in the cursor control success rate at 73.3%.  相似文献   

2.
A new way to improve the classification rate of an EEG-based brain-computer interface (BCI) could be to reconstruct the brain sources of EEG and to apply BCI methods to these derived sources instead of raw measured electrode potentials. EEG source reconstruction methods are based on electrophysiological information that could improve the discrimination between BCI tasks. In this paper, we present an EEG source reconstruction method for BCI. The results are compared with results from raw electrode potentials to enable direct evaluation of the method. Features are based on frequency power change and Bereitschaft potential. The features are ranked with mutual information before being fed to a proximal support vector machine. The dataset IV of the BCI competition II and data from four subjects serve as test data. Results show that the EEG inverse solution improves the classification rate and can lead to results comparable to the best currently known methods.  相似文献   

3.
A new way to improve the classification rate of an EEG-based brain-computer interface (BCI) could be to reconstruct the brain sources of EEG and to apply BCI methods to these derived sources instead of raw measured electrode potentials. EEG source reconstruction methods are based on electrophysiological information that could improve the discrimination between BCI tasks. In this paper, we present an EEG source reconstruction method for BCI. The results are compared with results from raw electrode potentials to enable direct evaluation of the method. Features are based on frequency power change and Bereitschaft potential. The features are ranked with mutual information before being fed to a proximal support vector machine. The dataset IV of the BCI competition II and data from four subjects serve as test data. Results show that the EEG inverse solution improves the classification rate and can lead to results comparable to the best currently known methods.  相似文献   

4.
Brain-computer interface (BCI) is to provide a communication channel that translates human intention reflected by a brain signal such as electroencephalogram (EEG) into a control signal for an output device. In recent years, the event-related desynchronization (ERD) and movement-related potentials (MRPs) are utilized as important features in motor related BCI system, and the common spatial patterns (CSP) algorithm has shown to be very useful for ERD-based classification. However, as MRPs are slow nonoscillatory EEG potential shifts, CSP is not an appropriate approach for MRPs-based classification. Here, another spatial filtering algorithm, discriminative spatial patterns (DSP), is newly introduced for better extraction of the difference in the amplitudes of MRPs, and it is integrated with CSP to extract the features from the EEG signals recorded during voluntary left versus right finger movement tasks. A support vector machines (SVM) based framework is designed as the classifier for the features. The results show that, for MRPs and ERD features, the combined spatial filters can realize the single-trial EEG classification better than anyone of DSP and CSP alone does. Thus, we propose an EEG-based BCI system with the two feature sets, one based on CSP (ERD) and the other based on DSP (MRPs), classified by SVM.  相似文献   

5.
Classification of the electroencephalogram (EEG) during motor imagery of the left or right hand can be performed using a classifier comprising two hidden Markov models (HMMs) describing the spatio-temporal patterns related to the imagination. Due to the known asymmetries during motor imagery of rightand left-hand movement, an HMM-based classifier allowing asymmetrical structures is introduced. The comparison between such a system and a symmetrical one is based on the error rate of classification. The results for EEG data collected during 20 sessions from five subjects demonstrate a significant improvement of 9% for the classification accuracy for the asymmetric classifiers. The selection of the DAM for classification is done using a variant of genetic algorithms (GAs); namely, the adaptive reservoir genetic algorithm (ARGA)  相似文献   

6.
Wang  Y. Hong  B. Gao  X. Gao  S. 《Electronics letters》2007,43(10):557-558
A simple electroencephalogram (EEG) electrode layout is proposed to implement a motor imagery based brain-computer interface (BCI). The design was derived from investigation of EEG synchronisation in the motor cortex. A significant improvement in BCI performance was obtained in the new system  相似文献   

7.
Abstract-The development of asynchronous brain-computer interface (BCI) based on motor imagery (M1) poses the research in algorithms for detecting the nontask states (i.e., idle state) and the design of continuous classifiers that classify continuously incoming electroencephalogram (EEG) samples. An algorithm is proposed in this paper which integrates two two-class classifiers to detect idle state and utilizes a sliding window to achieve continuous outputs. The common spatial pattern (CSP) algorithm is used to extract features of EEG signals and the linear support vector machine (SVM) is utilized to serve as classifier. The algorithm is applied on dataset IVb of BCI competition Ⅲ, with a resulting mean square error of 0.66. The result indicates that the proposed algorithm is feasible in the first step of the development of asynchronous systems.  相似文献   

8.
The development of asynchronous braincomputer interface (BCI) based on motor imagery (MI) poses the research in algorithms for detecting the nontask states (i.e., idle state) and the design of continuous classifiers that classify continuously incoming electroencephalogram (EEG) samples. An algorithm is proposed in this paper which integrates two two-class classifiers to detect idle state and utilizes a sliding window to achieve continuous outputs. The common spatial pattern (CSP) algorithm is used to extract features of EEG signals and the linear support vector machine (SVM) is utilized to serve as classifier. The algorithm is applied on dataset IVb of BCI competition III, with a resulting mean square error of 0.66. The result indicates that the proposed algorithm is feasible in the first step of the development of asynchronous systems.  相似文献   

9.
To control a cursor on a monitor screen, a user generally needs to perform two tasks sequentially. The first task is to move the cursor to a target on the monitor screen (termed a 2-D cursor movement), and the second task is either to select a target of interest by clicking on it or to reject a target that is not of interest by not clicking on it. In a previous study, we implemented the former function in an EEG-based brain-computer interface system using motor imagery and the P300 potential to control the horizontal and vertical cursor movements, respectively. In this study, the target selection or rejection functionality is implemented using a hybrid feature from motor imagery and the P300 potential. Specifically, to select the target of interest, the user must focus his or her attention on a flashing button to evoke the P300 potential, while simultaneously maintaining an idle state of motor imagery. Otherwise, the user performs left-/right-hand motor imagery without paying attention to any buttons to reject the target. Our data analysis and online experimental results validate the effectiveness of our approach. The proposed hybrid feature is shown to be more effective than the use of either the motor imagery feature or the P300 feature alone. Eleven subjects attended our online experiment, in which a trial involved sequential 2-D cursor movement and target selection. The average duration of each trial and average accuracy of target selection were 18.19 s and 93.99% , respectively, and each target selection or rejection event was performed within 2 s.  相似文献   

10.
Brain-computer interface (BCI) systems create a novel communication channel from the brain to an output device by bypassing conventional motor output pathways of nerves and muscles. Therefore they could provide a new communication and control option for paralyzed patients. Modern BCI technology is essentially based on techniques for the classification of single-trial brain signals. Here we present a novel technique that allows the simultaneous optimization of a spatial and a spectral filter enhancing discriminability rates of multichannel EEG single-trials. The evaluation of 60 experiments involving 22 different subjects demonstrates the significant superiority of the proposed algorithm over to its classical counterpart: the median classification error rate was decreased by 11%. Apart from the enhanced classification, the spatial and/or the spectral filter that are determined by the algorithm can also be used for further analysis of the data, e.g., for source localization of the respective brain rhythms.  相似文献   

11.
脑机接口(BCI)能将受试者意图相关的大脑活动转化为外部设备控制指令,在神经疾病治疗、运动康复等方面具有较高应用潜力。BCI的实现需从人脑获取有意义的信号,而脑电图(EEG)可以反映神经电活动,主要用于对反映实时性要求较高的BCI系统;近红外光谱(NIRS)主要反映血流动力学水平,一般用于神经生理状态等需要精确定位脑活跃区域的研究。EEG和NIRS因其非侵入、方便穿戴、成本较低等优点,成为BCI的重要信号获取方法。相比于单模态BCI系统,基于EEG-NIRS 联合分析的混合BCI系统由于具有更丰富的信号特征,在生理状态检测、运动想象等领域得到了越来越多的关注与研究。该文从EEG-NIRS联合分析在脑机接口中应用的研究现状出发,在数据和特征融合程度、层面上归纳最近的相关领域研究现状,并对EEG-NIRS信号处理手段的研究前景进行了展望。  相似文献   

12.
王永轩  邱天爽  刘蓉  李春月  马征 《信号处理》2012,28(8):1059-1062
针对脑电意识任务动态分类问题,本文提出了一种基于投影能量的特征提取方法来提取反映不同思维状态的脑电特征,并结合信息累积后验贝叶斯方法进行分类以提高脑-机接口系统的分类正确率。该方法通过使两类信号在投影基上的平均投影能量比达到极值,从而达到提高脑电信号分类准确度的作用。实验结果表明两个运动想象数据集上的最大正确率都达到90%左右,最大分类准确率、kappa系数和最大互信息等评价指标的比较也表明该方法能够有效提高BCI系统的性能,具有较好的实用性。  相似文献   

13.
龚磊  刘蓉 《数字通信》2012,39(3):39-43
针对脑一机接口系统中运动想象脑电信号(Electroencephalography,EEG)的模式识别问题,提出了加权节律成分提取(WeightedRhythmicComponentExtraction,WRCE)与共空间模式(CommonSpacePattern,CSP)相结合的特征提取方法,并使用Fisher线性判别分析进行分类。采用2003年的BCI竞赛数据Datasetm对该方法进行评估,测试数据的分类正确率达到86.13%,比使用传统CSP方法进行特征提取时的分类正确率提高了5.71%,表明该方法可有效地应用于运动想象EEG的模式识别中。  相似文献   

14.
15.
针对脑-机接口(BCI)研究中采用单一特征对运动想象脑电信号(EEG)识别率不高的问题,该文提出一种结合脑功能网络和样本熵的特征提取方法。根据事件相关同步/去同步(ERS/ERD)现象以及皮层与肢体运动想象间的对侧映射机制,选取小波包变换消噪重构后的\begin{document}$ \mu$\end{document}节律脑电信号,用左侧27个通道、右侧27个通道分别对左半球脑区和右半球脑区构建脑功能网络,计算网络的平均节点度和平均聚集系数作为运动想象的脑功能网络特征,并结合C3, C4通道节律的样本熵构筑分布性和指向性相结合的特征向量。选用支持向量机(SVM)对左右手运动想象脑电信号进行分类,结果表明基于脑功能网络和样本熵的特征提取方法能够实现更优的分类效果,分类准确率最高可达90.27%。  相似文献   

16.
Brain-computer interfaces require effective online processing of electroencephalogram (EEG) measurements, e.g., as a part of feedback systems. We present an algorithm for single-trial online classification of imaginary left and right hand movements, based on time-frequency information derived from filtering EEG wideband raw data with causal Morlet wavelets, which are adapted to individual EEG spectra. Since imaginary hand movements lead to perturbations of the ongoing pericentral mu rhythm, we estimate probabilistic models for amplitude modulation in lower (10 Hz) and upper (20 Hz) frequency bands over the sensorimotor hand cortices both contra- and ipsilaterally to the imagined movements (i.e., at EEG channels C3 and C4). We use an integrative approach to accumulate over time evidence for the subject's unknown motor intention. Disclosure of test data labels after the competition showed this approach to succeed with an error rate as low as 10.7%.  相似文献   

17.
Due to the volume conduction, electroencephalogram (EEG) gives a rather blurred image of brain activities. It is a challenge for generating satisfactory performance with EEG. This paper studies the multiple areas fusion of EEG classifiers to improve the motor imagery EEG classification performance. Two feature extraction methods are employed to extract the feature from three different areas of EEG. One is power spectral density (PSD), and the other is common spatial patterns (CSP). Classifiers are designed based on the well-known linear discrimination analysis (LDA). The fusion of the individual classifiers is realized by means of the Choquet fuzzy integral. It is demonstrated that the proposed method comes with better performance compared with the individual classifier.  相似文献   

18.

The brain computer interface (BCI) are used in many applications including medical, environment, education, economy, and social fields. In order to have a high performing BCI classification, the training set must contain variations of high quality subjects which are discriminative. Variations will also drive transferability of training data for generalization purposes. However, if the test subject is unique from the training set variations, BCI performance may suffer. Previously, this problem was solved by introducing transfer learning in the context of spatial filtering on small training set by creating high quality variations within training subjects. In this study however, it was discovered that transfer learning can also be used to compress the training data into an optimal compact size while improving training data performance. The transfer learning framework proposed was on motor imagery BCI-EEG using CUR matrix decomposition algorithm which decomposes data into two components; C and UR which is each subject’s EEG signal and common matrix derived from historical EEG data, respectively. The method is considered transfer learning process because it utilizes historical data as common matrix for the classification purposes. This framework is implemented in the BCI system along with Common Spatial Pattern (CSP) as features extractor and Extreme Learning Machine (ELM) as classifier and this combination exhibits an increase of accuracy to up to 26% with 83% training database compression.

  相似文献   

19.
基于运动意图的脑-机接口(BCI)对人体运动功能增强、替代和康复具有重要研究意义与应用价值。其中,运动想象(MI)是最常用的表征运动意图的BCI范式。然而,传统MI-BCI通常仅实现不同肢体部位运动意图解码,且识别正确率较低,制约着精细运动控制与康复效果。针对上述问题,近年来研究者在单一肢体特定部位、运动学与动力学意图诱发头皮脑电编解码以及运动意图错误相关电位检测3个方面开展了一系列有意义的探索,并在高自由度的运动指令控制和面向卒中患者的临床康复应用方面取得了较大的研究成果。该文从运动意图的头皮脑电(EEG)编解码相关范式及其BCI应用两个方面综述了本领域研究进展,并探讨当前研究存在的问题和可能的解决方案,以期促进运动意图BCI技术的深入研究及开发应用。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号