首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
铁炭微电解/Fenton氧化预处理高浓度煤化工废水的研究   总被引:2,自引:1,他引:2  
采用铁炭微电解/Fenton氧化组合工艺预处理高浓度煤化工废水,研究了工艺条件对COD去除率的影响。结果表明,铁炭床微电解的最佳运行条件为:进水pH=2,反应时间为20 min;Fenton氧化的最佳条件为:进水pH=4,30%H2O2投加量为3 mL/L,反应时间为60 min。在此运行条件下,COD总去除率可以达到60%~70%,其中微电解反应床COD去除率为40%~47%。采用该工艺预处理高浓度煤化工废水,降低了后续生物处理的负荷,同时不会引起铁炭床的钝化和板结。  相似文献   

2.
微电解-混凝预处理环己酮废水   总被引:1,自引:0,他引:1  
研究了用铁炭微电解.混凝工艺预处理高浓度环己酮废水,通过实验确定了铁炭质量比、进水pH值、水力停留时间及曝气时间4个影响因素的最佳条件分别为:铁炭质量比为1:2,环己酮废水进水pH为2~3,停留时间为4h且有曝气条件下,COD去除率达到55.35%,废水的可生化性得到提高。  相似文献   

3.
采用铁炭微电解吸附-Fenton氧化、超声联合工艺处理高浓度有机实验室废水,研究了pH值、H2O2投加量、FeSO4投加量、反应时间等因素对COD去除率的影响。结果表明:铁炭微电解吸附体系在pH=5、Fe∶C体积比为1∶1、时间为3h条件下COD去除率为24%;再经Fenton氧化控制反应时间2h,在FeSO4投加量为6g/L、H2O2投加量为90mL/L、pH=3的处理条件下,废水COD总去除率达48.32%。  相似文献   

4.
铁炭微电解法预处理制药废水的研究   总被引:8,自引:0,他引:8  
史敬伟  杨晓东 《辽宁化工》2006,35(4):211-213
依据微电解法的基本原理,采用铁炭对制药利福平废水进行预处理研究。通过实验确定了进水时的pH值、水力停留时间、铁炭质量比以及填料粒径大小4个影响因素。即用微电解法预处理制药废水的最佳工艺条件及在该条件下有机废水的处理结果分别为:预处理利福平废水,进水pH=2,铁屑粒度为24目,铁炭比为20∶1,废水在微电解柱中的停留时间为120 min;水样COD去除率达到53.5%,色度去除率达到90.00%。  相似文献   

5.
铁炭微电解-Fenton试剂预处理纤维素发酵废水   总被引:7,自引:0,他引:7  
采用铁炭微电解-Fenton试剂对高化学需氧量、高色度及高盐度的纤维素发酵废水进行了预处理研究。研究表明,铁炭微电解的最佳工艺条件为pH值为4~5,铁屑用量150 g/L,铁炭质量比为1∶2,反应时间1 h,曝气量30 mL/min;Fenton反应最佳条件为:pH值为5,H2O2投加量为4.5 mL/L,反应时间60 min,在此反应条件下,废水COD总去除率接近40%,色度去除率达81%,有效地去除了废水中影响乙醇发酵的4种抑制剂,改善了后续生化处理条件,提高了废水的可生化性。  相似文献   

6.
铁炭微电解-微波预处理垃圾渗滤液膜滤浓缩液   总被引:1,自引:0,他引:1  
采用铁炭微电解-微波协同氧化技术预处理垃圾填埋场产生的垃圾渗滤液膜分离浓缩液。结果表明:当铁炭微电解处理的进水pH为3.0,铁炭质量比为1∶1,气水比15∶1,反应时间为4 h;氧化预处理的进水pH为3.0,氧化剂质量浓度为2 g/L,反应时间为10 min;微波功率为600 W,反应时间为10 min时,系统出水COD为280 mg/L,色度为40倍,总COD去除率及总色度去除率分别达91.4%、96.8%;出水B/C从0.006提高到0.17,出水的可生化性得到较大的改善。  相似文献   

7.
《应用化工》2022,(7):1673-1678
采用铁炭微电解法、Fenton超声氧化法、铁炭微电解/Fenton超声氧化联用技术对HMX生产废水进行了处理,考察了不同实验因素对废水COD去除率的影响规律,得到相应的最佳工艺参数和联用工艺处理效果。结果表明,铁炭微电解法处理HMX废水的最佳工艺条件为:反应时间50~60 min,反应温度15~20℃,初始pH值3~4,铁炭和废水料液比1∶1,此条件下的COD去除率可达58.12%;Fenton超声氧化法处理HMX废水的最佳工艺条件为:超声时间30 min,H_2O_2投料量0.24 mol/L,Fe(2+)投料量0.023 mol/L,超声频率45 kHz,超声功率75%,此条件下的COD去除率可达85.51%;铁炭微电解-Fenton超声氧化联用工艺处理HMX废水,COD去除率高达96.69%,比单一采用铁炭微电解法和Fenton超声氧化法分别高38.57%和11.18%,联用工艺处理HMX废水优于单一处理效果,优势显著。  相似文献   

8.
张冰  李杰  肖举强 《广东化工》2013,(13):129-130
考察铁炭电解对处理腈纶废水的强化作用,对进水COD浓度、pH、和不同铁碳比3个影响因素,研究最佳条件:即进水COD浓度250~300 mg/L,pH=5,铁碳体积比为2∶1。废水在铁碳电解的反应停留时间HRT=30 min,再经过固定化微生物反应器,进一步处理经过铁碳微电解预处理的腈纶废水,该组合工艺对废水COD总去除率达到65%,氨氮总去除率达到58.26%,较单一固定化微生物技术有明显提高。  相似文献   

9.
采用铁炭微电解法、Fenton超声氧化法、铁炭微电解/Fenton超声氧化联用技术对HMX生产废水进行了处理,考察了不同实验因素对废水COD去除率的影响规律,得到相应的最佳工艺参数和联用工艺处理效果。结果表明,铁炭微电解法处理HMX废水的最佳工艺条件为:反应时间50~60 min,反应温度15~20℃,初始pH值3~4,铁炭和废水料液比1∶1,此条件下的COD去除率可达58.12%;Fenton超声氧化法处理HMX废水的最佳工艺条件为:超声时间30 min,H_2O_2投料量0.24 mol/L,Fe~(2+)投料量0.023 mol/L,超声频率45 kHz,超声功率75%,此条件下的COD去除率可达85.51%;铁炭微电解-Fenton超声氧化联用工艺处理HMX废水,COD去除率高达96.69%,比单一采用铁炭微电解法和Fenton超声氧化法分别高38.57%和11.18%,联用工艺处理HMX废水优于单一处理效果,优势显著。  相似文献   

10.
阿奇霉素废水的预处理   总被引:3,自引:0,他引:3  
针对阿奇霉素废水高COD、高氨氮浓度、高色度以及高含盐量的特点,采用吹脱-铁炭微电解-Fenton氧化预处理阿奇霉素废水,效果良好。试验结果表明:吹脱pH值为11~12、吹脱时间20 h时,氨氮去除率达到80%;铁炭微电解pH值为3~4、铁炭比为1.5、反应时间为80 min时,COD去除率达到45%;向微电解出水投加30 mL/L的H2O2(质量分数为30%)进行Fenton氧化处理,COD去除率提高到89.6%。预处理后,废水的BOD5/COD从0.18提高到0.3,提高了废水的可生化性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号