首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
A model for calculating the cavitation noise is presented and applied to water ring pumps. The results reveal the influence of hydraulic and constructional parameters. The constants in the semi-empirical equations are derived from experimental data of selected pumps. These equations allow to predict the noise for different operating conditions and geometrically similar pumps. The results provide guidelines for a substantial reduction of cavitation and cavitation-related noise by proper constructional measures.  相似文献   

2.
Rubber toughened epoxies are used in a wide range of applications including adhesives when toughness is a crucial property. It is well known that the cavitation of the rubber particles is an important process to optimise the toughness of such materials. This article describes the development of a predictive model to describe the dependence of rubber particle cavitation on particle size. The model is developed using a combination of experimental observations and finite element simulations. Predictions have been obtained for both uniaxial loading conditions and the triaxial loading conditions expected ahead of a crack. The model has been extended to consider the cavitation of nano-sized ‘rubber’ particles.  相似文献   

3.
针对工程实际应用中调节阀普遍出现的空化及其产生的噪声问题,采用基于流声场声振耦合的数值分析方法,研究了不同开度与不同压差对空化噪声的影响。调节阀的空化噪声是阀门产生噪声的原因之一,传统的方法很难准确的分析和预测这种噪声。首先利用CFD软件计算调节阀内的三维瞬态流场,然后将瞬态流场的计算信息作为声场计算的激励信号施加到调节阀阀体上,最后基于声振耦合的方法对其进行声学响应计算。结果表明:本文所研究的调节阀空化噪声随着开度的增加呈先减小后增大的趋势;当调节阀进出口压差增大时,空化噪声也随之增大,在出口压力为0.45MPa时,噪声达到了93.2dB;通过数值模拟得到云图可作为分析噪声产生位置的依据,计算得到的噪声大小可作为判断空化程度的依据,为声学检测阀门空化程度提供数据支持。  相似文献   

4.
张俊  王明洲  胡友峰 《声学技术》2021,40(6):757-762
空化是水下高速航行器在进行总体设计时需要考虑的重要因素。对空化产生的噪声特性进行研究有助于水下航行器航行性能和目标检测能力的提高。文章首先介绍了空化噪声的形成机理和数学模型,然后基于实测数据对空化噪声相应的统计特性进行了分析,计算了典型的单个声脉冲形式的空化噪声的概率分布、偏度和峰度,对比分析了无空化发生与空化发展比较充分条件下实测空化噪声的偏度和峰度特性。结果表明,在空化充分发展时水下航行器空化噪声具有明显的非高斯特性,其偏度和峰度值明显大于理想高斯噪声或者实际的海洋环境噪声。有利于提高空化条件下水下航行器对目标辐射噪声检测的准确性以及检测系统的环境适应能力。  相似文献   

5.
Hydraulic turbines include stationary and rotating components. The interaction of the components, mainly between the runner blades and distributor vanes, is critical when the frequency of the rotor-stator interaction (RSI) approaches the runner natural frequency. This causes resonance in the turbine runner and the premature failure of the blades. Several turbines have experienced such problems in the last few years. The studies indicated that the added mass effect causes change in natural frequency of the runner. In the critical conditions, when the runner natural frequency is close to the RSI frequency, hydrodynamic damping is an important parameter in controlling turbomachinery blade-forced response. A reliable technique that can predict/estimate the change in the runner natural frequency due to added mass has yet to be developed. This paper reviews the investigations conducted on fluid structure interaction (FSI) focusing on the role of hydrodynamic damping during resonance, RSI and added mass effect. In specific, the review includes: (1) role of boundary layer to improve the damping effect, (2) how nearby structure and submergence level changes the damping effect, (3) dependency on mode-shape, (4) how freestream velocity and vortex shedding helps to increase damping, (5) damping during cavitation, (6) damping variation with respect to a dimensionless β parameter and (7) damping effect during rotation. In the summary, need for the future study of FSI within the field of hydropower and how damping is important in avoiding the catastrophic failures in the early life of hydraulic turbines is discussed.  相似文献   

6.
V RAMESH  S M DESHPANDE 《Sadhana》2014,39(1):149-164
The present paper deals with the development and application of a kinetic theory-based mesh-free method for unsteady flows. The method has the capability to compute on any arbitrary distribution of moving nodes. In general, computation of unsteady flow past multiple moving boundaries using conventional finite volume solvers are quite involved. They invariably require repeated grid generation or an efficient grid movement strategy. This approach becomes more difficult when there are many moving boundaries. In the present work, we propose a simple and an effective node movement strategy for the mesh-free solver. This can tackle the unsteady problems with moving boundaries in a much easier way. Using the present method we have computed unsteady flow in oscillating turbomachinery blades. A simple energy method has been used to predict flutter using the unsteady computations. The results compare well with the available experiments and other computations.  相似文献   

7.
船舶螺旋桨辐射噪声与尾流场的相关性及特征分析方法   总被引:1,自引:0,他引:1  
研究螺旋桨几何特征和工况特征变化对螺旋桨尾流场和噪声特征的影响。采用黏性多相流理论对螺旋桨尾流场特征进行数值预报。利用N-S方程、混合多相流模型、湍流模型和空化模型数值求解尾流场压力脉动等物理量。将压力脉动数值解和测量噪声声压信号的功率谱低频线谱特征进行分析,表明两者特征具有一定的相关性。最后分析侧斜角和进速系数对压力信号频谱特征的影响,获得了低频线谱幅值分布特征与螺旋桨侧斜角、进速系数等参数的初步关系。  相似文献   

8.
基于小波奇异性理论的水轮机空化检测   总被引:4,自引:0,他引:4  
空化噪声谱分析中常采用的功率谱分析在研究空化噪声这种具有很强突变性的信号时具有明显的缺陷,文中提出了一种基于小波奇异性理论的水轮机空化检测方法,并提出了小波基选择方案、突变点检测条件和最佳检测阈值。进行了混流式水轮机的模型转轮试验,观测了模型转轮额定工况下的涡带形态和空化发展情况,并采集存储了大量空化噪声数据。对照观测结果分析实际的检测数据,结果表明该方法的有效性,并很好的检测出空化初生和空化形态转变。  相似文献   

9.
The dynamic response of deformable structures subjected to shock load and cavitation reload has been simulated using a multiphase model, which consists of an interface capturing method and a one-fluid cavitation model. Fluid–structure interaction (FSI) is captured via a modified ghost fluid method (Liu et al. in J Comput Phys 190: 651–681, 2003), where the structure is assumed to be a hydro-elasto-plastic material if subjected to a strong shock load. Bulk cavitation near the structural surface is captured using an isentropic model (Liu et al. in J Comput Phys 201:80–108, 2004). The integrated multiphase model is validated by comparing numerical predictions with 1D analytical solutions, and with numerical solutions calculated using the cavitation acoustic finite element (CAFé) method (Sprague and Geers in Shocks vib 7:105–122, 2001). To assess the ability of the multiphase model for multi- dimensions, underwater explosions (UNDEX) near structures are computed. The importance of cavitation reloading and FSI is investigated. Comparisons of the predicted pressure time histories with different explosion center are shown, and the effect on the structure is discussed.  相似文献   

10.
Conversion of solar energy into mechanical or electrical energy in small solar power plants (10–500 kW) requires new design criteria, especially with regard to turbomachinary. The cycles suitable for solar power production are affected by many variable such as kinds of working fluid, range of power and maximum cycle temperature determined by the type of collector. Also, the size of the plant will influence the selection of the various components of the plant, especially that of the turbomachinery. A study of a suitable thermodynamic cycle and working fluid is done for diffèrent ranges of power and temperature. The working fluids considered are steam, toluene, and refrigerant 113 for the Rankine cycle systems and air for gas turbine systems. For Rankine cycles, turbine selection is a problem in the small power range. This is mainly due to the fact, that for high efficiency the enthalpy drop should be as high as possible, and the mass flow rate of the working fluid through the turbine becomes very small. This, in turn, requires high rotational speed, multistaging and partial admission, especially if water is the working fluid. Toluene offers better design criteria for the turbine in the same temperature and power range (50–200 kW). For the very small range (10 kW) refrigerant 113 or similar should be used, otherwise severe design problems with the turbine will occur. In this power range, photovoltaics may also be considered. For high concentration systems with “Brayton cycles” (800–1000°C) only open-cycle gas turbine plants should be used.  相似文献   

11.
The need for an instrument that measures the bubble distribution in a flow is well documented by the numerous studies that are conducted on cavitation inception and cavitation damage to materials. The present measurement techniques do not provide a complete solution to these problems. In this short paper, we have developed an instrument that determines the bubble-size distribution by measuring the intensity of light scattered from the bubbles. Bubbles in the range of 0.005 to 0.04 in in diameter were measured with this method. The lower limit of this range can be extended by decreasing the factors that contribute noise to the measurement.  相似文献   

12.
A boundary element method is applied to predict the unsteady cavitating performance of marine propellers subject to a non-axisymmetric inflow with the complete tunnel wall effect. The tunnel and propeller problem is solved directly to predict the fully unsteady performance of the cavitating propeller. The cavitation on blade and wake surface is determined by applying the dynamic and the kinematic boundary conditions on the cavity surface. The potential on the cavity surface is known from the dynamic boundary condition and the relation between cavitation number and cavity velocity. Once the boundary value problem is solved for the unknowns- the potentials on the wetted blade surface and the normal derivative of potentials on the cavity surface – the new cavity shape is adjusted by using the normal derivative of the potential. The potential on the new cavity surface is determined by using the kinematic boundary condition on the cavity. The procedure is repeated until the cavity shape converges and the pressure on the cavity becomes constant. To validate the present method, the effects of the number of blade panels and the dimensions of the tunnel walls on blade forces are presented. The predicted cavity patterns are compared with those observed from experiment.  相似文献   

13.
以某离心泵作透平为研究对象,对流体诱发的外场噪声特性进行了数值计算和试验研究。在典型流量下,采用雷诺时均方法获取壁面偶极子声源,并利用FEM/AML方法求解出叶轮和壳体偶极子源作用的流动噪声,基于声振耦合法计算出流体激励结构振动产生的外场流激噪声,分析不同性质噪声源的频谱特性,同时评估外场声源在各个频段下的贡献量。借助模态试验对透平壳体结构的模态参数进行了识别。结果表明,计算与试验振型近似,固有频率平均相对误差小于4.60%。结构的影响使得外场五阶叶频处声压最高,二阶叶频处次之。壳体偶极子作用的流激噪声对外场噪声的贡献最大,其次是壳体偶极子作用的流动噪声,叶轮偶极子作用的流激噪声对外场噪声贡献最小。研究结果为低噪声叶轮机械设计提供了一定的参考。  相似文献   

14.
This paper reviews the development of computational fluid dynamics (CFD) specifically for turbomachinery simulations and with a particular focus on application to problems with complex geometry. The review is structured by considering this development as a series of paradigm shifts, followed by asymptotes. The original S1-S2 blade-blade-throughflow model is briefly described, followed by the development of two-dimensional then three-dimensional blade-blade analysis. This in turn evolved from inviscid to viscous analysis and then from steady to unsteady flow simulations. This development trajectory led over a surprisingly small number of years to an accepted approach-a 'CFD orthodoxy'. A very important current area of intense interest and activity in turbomachinery simulation is in accounting for real geometry effects, not just in the secondary air and turbine cooling systems but also associated with the primary path. The requirements here are threefold: capturing and representing these geometries in a computer model; making rapid design changes to these complex geometries; and managing the very large associated computational models on PC clusters. Accordingly, the challenges in the application of the current CFD orthodoxy to complex geometries are described in some detail. The main aim of this paper is to argue that the current CFD orthodoxy is on a new asymptote and is not in fact suited for application to complex geometries and that a paradigm shift must be sought. In particular, the new paradigm must be geometry centric and inherently parallel without serial bottlenecks. The main contribution of this paper is to describe such a potential paradigm shift, inspired by the animation industry, based on a fundamental shift in perspective from explicit to implicit geometry and then illustrate this with a number of applications to turbomachinery.  相似文献   

15.
A numerical method is presented for the design of thin turbomachinery blades with specified whirl velocities across the blade span. The numerical scheme involves iteration between the directs solution of a finite-volume method developed earlier on by Soulis1 and a design solution. The finite-volume method, which is a combination of finite elements and finite differences, solves the three-dimensional, inviscid, steady arid potential flow through turbomachinery blade rows in the incompressible, compressible and transonic flow range. In the design step, the whirl velocity distribution is specified across the blade span (Dirichlet boundary condition). The design procedure yields a new set of co-ordinates for the blade geometry which are used in the next iteration of the direct solution. However, in the present analysis only thin turbomachinery blades are designed, although a fully three-dimensional numerical method is used (the whirl velocity components of the flow field are averaged over the blade suction and pressure surface). The numerical method has been used to design free-vortex thin turbomachinery blades. Results show that the new numerical procedure is a comparatively economic and reliable method for designing thin turbomachinery blades. It may form the baseline for complete three-dimensional turbomachinery blade designs.  相似文献   

16.
Water cavitation peening is a technique similar to shot peening that induces compressive residual stresses in materials for improved fatigue resistance. Generally, residual stress is of two types: macro-residual stress and micro-residual stress. In this paper, a novel combined finite element method and dislocation density method (FEM/DDM), proposed for predicting macro and micro-residual stresses induced on the material subsurface treated with water cavitation peening, is presented. A bilinear elastic–plastic finite element method was conducted to predict macro-residual stresses and a dislocation density method was conducted to predict micro-residual stresses. These approaches made possible the prediction of the magnitude and depth of residual stress fields in pure titanium. The effect of applied impact pressures on the residual stresses was also presented. The results of the FEM/DDM modeling were in good agreement with those of the experimental measurements.  相似文献   

17.
The recombination of two vortex filaments in a viscous incompressible fluid is analysed by the use of the vorticity equation. The analysis is confined to a local flow field, where the recombination process occurs, and is based on several assumptions, such as the conservation of the fluid impulse, spatial symmetry of the flow field etc. The flow field is expanded as polynomials of coordinates, and variations of their coefficients are obtained by the use of the vorticity equation. It is proved that the process is completed within a short time ofO (σ 2/Γ) and the viscous effect is essential;σ and Γ are the size and the circulation of the vortex filaments, respectively. This result is applied to predict the far-field noise of a circular jet by assuming that the main noise source is the recombination process in deformed vortex rings in the jet near field. The predicted noise intensity shows theU dependence and has an additional new factor (d/σ)6;U is the jet velocity andd is the average spacing between vortex rings.  相似文献   

18.
高强度聚焦超声(High Intensity Focused Ultrasound,HIFU)所致空化效应在临床应用中扮演着重要角色,对HIFU临床治疗过程中的空化活动进行实时监测,结合数据分析与治疗过程中实时反馈,可进一步提高HIFU治疗的安全性和有效性。在现有HIFU临床治疗系统的基础上,将两个被动空化检测探头与HIFU换能器集成。在Matlab环境下开发了独立的上位机控制系统,基于以太网通信和虚拟仪器技术,实现了上位机的自动测试,融合被动空化检测系统与HIFU临床治疗系统,对空化所致声发射信号进行实时监测。通过HIFU辐照离体组织实验对该系统进行了测试验证,各种声功率条件下的超声辐照离体组织监测过程中,次谐波幅值与宽带噪声的均方根被实时可视化,用于监测空化的发生;次谐波与宽带噪声均方根的积分曲线斜率用于表征组织焦域处的相对空化强度。实验结果表明,该系统可满足临床治疗过程中对空化活动进行实时监测和数据分析处理的需求,为深入研究实际临床治疗中空化效应和实时反馈提供了一种有力的研究手段。  相似文献   

19.
20.
本文系上海 1 1 0kV凤阳变电站噪声治理实例 ,可供其它变电站噪声治理参考  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号