首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seasonal samples were taken from four selected stations on the Habbaniya lake, middle of Iraq during 1997, to study six heavy metals (Cu, Cd, Pb, Ni, Mn, and Zn), in water suspended particles, sediments and aquatic plants. Five plant species were collected, represented the most dominant in the lake, namely Myriophyllum verticillatum, Potamogeton crispus, P. pectinatus, Ceratophyllum demersum and Vallisnaria spiralis . Zn had the highest concentration among the studied metals in filtered water and suspended particles with an average of 4.08 w g/l and 26088 w g/g, respectively. Whereas, Mn had the highest in the sediments and all studied aquatic plants, which ranged between 213.3- 2027 w g/g and 100-1725 w g/g, respectively, Meanwhile, Cd had the lowest concentration in all studied samples.  相似文献   

2.
Concentration of heavy metals (Al, Ba, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sr, V and Zn) as well as macronutrients (N, P, K, Ca, Mg, S) were measured in water, bottom sediments and plants from anthropogenic lakes in West Poland. The collected plants were: Phragmites australis, Potamogeton natans, Iris pseudoacorus, Juncus effusus, Drepanocladus aduncus, Juncus bulbosus, Phalaris arundinacea, Carex remota and Calamagrostis epigeios. Two reference lakes were sampled for Nymphaea alba, Phragmites australis, Schoenoplectus lacustris, Typha angustifolia and Polygonum hydropiper. These plants contained elevated levels of Cd, Co, Cr, Cu and Mn, and part of the plants contained in addition elevated levels of Mn, Fe, Pb, Ni and Zn. Analyses of water indicated pollution with sulfates, Cd, Co, Ni. Zn, Pb and Cu, and bottom sediments indicated that some of the examined lakes were polluted with Cd, Co and Cr. Strong positive correlations were found between concentrations of Co in water and in plants and between Zn in sediments and plants, indicating the potential of plants for pollution monitoring for this metal. Heavy metal accumulation seemed to be directly associated with the exclusion of Ca and Mg.  相似文献   

3.
The purpose of this study was to explore a possible relationship between the soil availability of metals and their concentrations in various parts of Philadelphuscoronarius plants. Moreover, the possible impact of an aphid infestation on the contamination and antioxidant response of plants from the urban environment of Kraków and the reference rural area of Zagaje Stradowskie (southern Poland) was analyzed. The contents of the glutathione, proline, non-protein − SH groups, antioxidants, and phosphorous and the levels of guaiacol peroxidase and catalase activity in leaves and shoots either infested or not by the aphid Aphis fabae Scop., were measured. The potential bioavailability of metals (Cd; Cu; Ni; Pb; Zn) in the soil and their concentrations in P. coronarius plants originating from both sites were compared.The antioxidant responses were generally elevated in the plants in the polluted area. Such reactions were additionally changed by aphid infestation. Generally, the concentrations of metals in the HNO3 and CaCl2 extractants of the soils from two layers at the 0-20 and 20-40 cm depths from the polluted area were higher than in those from the reference area. Such differences were found for nickel and lead (in all examined extractants), zinc (in soil extractants from the layer at 20-40 cm) and cadmium (in HNO3 extractants). Significant positive relationships between the lead concentrations in the soil and in the plants were found. In the parts of plants from the polluted area, higher concentrations of Pb and Zn (leaves and shoots) and Cd (shoots) were recorded. The shoots and leaves of plants infested with aphids had higher concentrations of Zn but lower Pb. Moreover, their leaves had higher contaminations of Cu and Ni. In conclusion, aphids affected not only the antioxidant response of the plants but also their contamination with metals, especially contamination of the leaves.  相似文献   

4.
This study focused on the metal bioaccumulation of two aquatic insects (Ephoron virgo and Hydropsyche spp.) in order to evaluate the spatial distribution of metals, the interspecific differences between both filter-feeders and the bioaccumulation dynamics during E. virgo development stages. Hg, Cd, Ni, Cr, As, Pb, Cu, Ti, Zn and Mn were quantified in insects and in suspended particulate matter (SPM) sampled downstream and upstream of a chemical plant, where more than 300,000 t of polluted sediments are deposited. Hg concentrations were one order of magnitude higher downstream of the sediment dump, which showed that the Hg pollution originated in the chemical plant. Cd, Ni, Cr, Pb, Ti, Zn and Mn in invertebrates revealed that metal pollution was present upstream in other parts of the river. Interspecific differences were observed for all metals but Mn; significantly higher concentrations were observed in E. virgo over Hydropsyche exocellata, except for Cd, which showed 10-fold higher values. Hg and Cd increased until E. virgo nymphs reached 11 mm and decreased afterwards in late instars when nymphs were about to emerge. Cr, Pb, Ti and Mn decreased along early instars followed by a steady state in late instars. Similar values were obtained for Cu, As and Zn along all instars. Sexual differences between males and females of E. virgo were observed for Cd, Cu and Mn. Hg and Cd persistence was strong across developmental stages since high concentrations were found in eggs and emerging adults. Because the behavior of different metals varied for the two species and during the developmental stages of E. virgo, care should be taken in the interpretation of insect metal concentrations when analyzing the food chain transfer of metals in river ecosystems.  相似文献   

5.
The collapse of a pyrite-mining, tailing dam on 25 April 1998 contaminated approximately 2000 ha of croplands along the Agrio and Guadiamar river valleys in southern Spain. This paper reports the accumulation of chemical elements in soil and in two crops--sunflower and sorghum--affected by the spill. Total concentrations of As, Bi, Cd, Cu, Mn, Pb, Sb, Tl and Zn in spill-affected soils were greater than in adjacent, unaffected soils. Leaves of spill-affected crop plants had higher nutrient (K, Ca and Mg for sunflower and N and K for sorghum) concentrations than controls, indicating a 'fertilising' effect caused by the sludge. Seeds of spill-affected sunflower plants did accumulate more As, Cd, Cu and Zn than controls, but values were below toxic levels. Leaves of sorghum plants accumulated more As, Bi, Cd, Mn, Pb, Tl and Zn than controls, but these values were also below toxic levels for livestock consumption. In general, none of the heavy metals studied in both crops reached either phytotoxic or toxic levels for humans or livestock. Nevertheless, a continuous monitoring of heavy metal accumulation in soil and plants must be established in the spill-affected area.  相似文献   

6.
The concentrations of Cu, Zn, Fe, Mn, Ni, Cd, Pb and Co have been determined in water, bottom sediments, plankton, zoobenthos and ichthyofauna of mesotropic Lake Piaseczno located in eastern Poland. In water, sediments, plankton and benthos the most abundant heavy metals were Fe, Zn and Mn, whereas in fish Zn, Cu, and Mn were most abundant. The amount of heavy metals in the biotic components was dependent upon their concentration in water and partly upon the concentration in bottom sediments. A considerably less important role in the translocation of heavy metals is probably played by trophic interactions.  相似文献   

7.
The total concentrations and chemical partitioning of heavy metals in streambed sediments, collected around the Jaintia Hills coal deposit of northeast India, were studied using pollution indices and multivariate techniques to evaluate the risk and contamination levels from heavy metals and their possible origins. Results show that sediments close to mining sites have low pH (<4), high organic carbon, and contain significant amounts of Fe-oxyhydroxide phases (mainly, goethite and schwertmannite), which implies direct impact of coal mine drainage. The average concentrations of Fe, Cu, Co, Cd, Cr, and Zn exceeded the World average, and in some cases, Cd, Cu, Ni, and Cr concentrations exceeded the threshold effects level, which suggests they will be toxic to aquatic biota. Contamination factors (CF) show that the sediments are low to highly contaminated with Cd, Cu, Mn, Pb, Fe, and Zn and low to moderately contaminated with Co, Cr and Ni. The pollution load index (PLI), degree of contamination index (C deg) and Nemerow integrated pollution index (NIPI) show that the sediments are moderately to highly contaminated, with the extent of pollution greatest nearest to the collieries. The potential ecological risk index (RI) shows low to considerable ecological risk from heavy metals in the sediments, with Cd having the high potential of risk, which also agrees with the risk assessment code (RAC). Multivariate statistical analysis suggests that the concentrations of the heavy metals in stream sediments are strongly influenced by Fe-oxyhydroxide phases and organic carbon derived from anthropogenic sources, mainly coal mining activities. Although a significant proportion of the Cd, Mn, and Ni in the sediments are partitioned into exchangeable and organic fractions, a sizable amount of metals are also found in the Fe–Mn fraction, suggesting that Fe-oxyhydroxides play a dominant role in controlling metal mobility in these stream sediments.  相似文献   

8.
Heavy metals in wild rice from northern Wisconsin   总被引:5,自引:0,他引:5  
Wild rice grain samples from various parts of the world have been found to have elevated concentrations of heavy metals, raising concern for potential effects on human health. It was hypothesized that wild rice from north-central Wisconsin could potentially have elevated concentrations of some heavy metals because of possible exposure to these elements from the atmosphere or from water and sediments. In addition, no studies of heavy metals in wild rice from Wisconsin had been performed, and a baseline study was needed for future comparisons. Wild rice plants were collected from four areas in Bayfield, Forest, Langlade, Oneida, Sawyer and Wood Counties in September, 1997 and 1998 and divided into four plant parts for elemental analyses: roots, stems, leaves and seeds. A total of 194 samples from 51 plants were analyzed across the localities, with an average of 49 samples per part depending on the element. Samples were cleaned of soil, wet digested, and analyzed by ICP for Ag, As, Cd, Cr, Cu, Hg, Mg, Pb, Se and Zn. Roots contained the highest concentrations of Ag, As, Cd, Cr, Hg, Pb, and Se. Copper was highest in both roots and seeds, while Zn was highest just in seeds. Magnesium was highest in leaves. Seed baseline ranges for the 10 elements were established using the 95% confidence intervals of the medians. Wild rice plants from northern Wisconsin had normal levels of the nutritional elements Cu, Mg and Zn in the seeds. Silver, Cd, Hg, Cr, and Se were very low in concentration or within normal limits for food plants. Arsenic and Pb, however, were elevated and could pose a problem for human health. The pathway for As, Hg and Pb to the plants could be atmospheric.  相似文献   

9.
The concentrations of C, Fe, Mn, Zn, Cu, Pb and Cd were determined monthly in decomposing roots of Halimione portulacoides, using litterbag experiments, in two salt marshes of the Tagus estuary with different levels of contamination. Although carbon concentrations varied within a narrow interval during the experiment, litter decomposed rapidly in the first month (weight loss between 0.051 and 0.065 g d(-1)). The time variation of metals was examined in terms of Me/C ratios and metal stocks. Ratios of Fe/C and Mn/C and their metal stocks increased in spring, presumably due to the precipitation of oxides in the surface of decomposing roots. Subsequent decrease of Fe/C and Mn/C ratios suggests the use of Fe and Mn oxides, as electron acceptors, in the organic matter oxidation. Zinc, Cu, Pb and Cd ratios to C were, in general, higher than at initial conditions implying that metal that leached out was slower than carbon. However, metal stocks decreased during the experiment indicating that incorporation or sorption of metals in Fe and Mn oxides did not counterbalance the amount of Zn, Pb and Cd released from decomposing litter. An exception was observed for Cu, since stock in the less contaminated marsh (Pancas) increased during the decomposition, indicating that litter was efficient on Cu binding under more oxidising conditions. These results emphasize the importance of litter decomposition and sediment characteristics on metal cycling in salt marshes.  相似文献   

10.
Field and container experiments were conducted to assess the feasibility of growing aromatic crops in metal contaminated areas and the effect of metals on herbage and oil productivity. The field experiments were conducted in the vicinities of the Non-Ferrous Metals Combine (Zn-Cu smelter) near Plovdiv, Bulgaria using coriander, sage, dill, basil, hyssop, lemon balm, and chamomile grown at various distances from the smelter. Herbage essential oil yields of basil, chamomile, dill, and sage were reduced when they were grown closer to the smelter. Metal removal from the site with the harvestable plant parts was as high as 180 g ha(-1) for Cd, 660 g ha(-1) for Pb, 180 g ha(-1) for Cu, 350 g ha(-1) for Mn, and 205 g ha(-1) for Zn. Sequential extraction of soil demonstrated that metal fractionation was affected by the distance to the smelter. With decreasing distance to the smelter, the transfer factor (TF) for Cu and Zn decreased but increased for Cd, while the bioavailability factor (BF) for Cd, Pb, Cu, Mn, and Zn decreased. Scanning electron microscopy and X-ray microanalyses of contaminated soil verified that most of the Pb, Cd, Mn, Cu, and Zn were in the form of small (<1 microm) particles, although there were larger particles (1-5 microm) with high concentrations of individual metals. This study demonstrated that high concentrations of heavy metals in soil or growth medium did not result in metal transfer into the essential oil. Of the tested metals, only Cu at high concentrations may reduce oil content. Our results demonstrated that aromatic crops may not have significant phytoremediation potential, but growth of these crops in metal contaminated agricultural soils is a feasible alternative. Aromatic crops can provide economic return and metal-free final product, the essential oil.  相似文献   

11.
Agricultural uses of compost usually have a positive effect on the yield of vegetable crops for human consumption. However, compost that contains heavy metals can transfer these components to soils and plants. To evaluate the contamination levels of metals in soil, compost, and edible vegetables, the Mn, Zn, Pb, Cd, Cu, and Ni total contents were measured. Metal availability in soils, as well as other variables – the pH, CEC (cation exchange capacity), total nitrogen, organic carbon, particle size distribution and mineralogy of the clay fraction – were examined in the soil samples. The analysed compost samples were produced from urban solid waste, cattle manure, and edible vegetable and tree pruning residues. The values of pH, CEC, total nitrogen, organic matter, exchangeable hydrogen and carboxylic groups were measured in the compost samples. Of the six metals examined in the soils, in general, Mn and Zn attained the highest concentrations, followed by Cu. Relatively high Mn, Zn, Cu, Cd and Pb concentrations were found in the soils. Metal concentrations extracted with DTPA were below the critical levels in soils, i.e. the levels above which toxicity is likely. In general, Zn, Pb, Cd, Cu and Ni concentrations in compost were lower than those reported by other workers, while Mn levels were within the range for this metal in compost. The results showed that there was an effect of the vegetable type (p < 0.01) for all the parameters examined. High Pb concentrations were found in lettuce and chive as compared with the tolerance limit for this metal in fresh vegetables in Brazil. Cadmium concentrations were also enhanced in the fresh vegetables compared with the typical concentrations of metals in plants. Zinc, Cu, Cd, and Ni concentrations were lower than the tolerance limits established for foods by the Brazilian legislation.  相似文献   

12.
In the present investigation, the flocculation of dissolved Cd, Cu, Ni, Pb, Mn and Zn with initial concentrations of 1, 2.5 and 5 mg/L in Tadjan River water during mixing with the Caspian Sea water has been studied in order to determine estuarine capacity to remove dissolved metals in the accidental contamination of the river. The flocculation process was investigated on a series of mixtures with salinities ranging from 0.1 to 11 p.p.t. The flocculation rates were indicative of the nonconservative behaviour of Cd, Cu, Ni, Pb, Mn and Zn during estuarine mixing. The order of the final flocculation rate of dissolved metals at 1, 2.5 and 5 mg/L of initial metal concentrations in the river water is as follows:Cu (99%)>Cd (95%)>Zn (88%)>Mn (85%)>Pb (83%)>Ni (73%), Cu(95.6%)>Pb(92.4%)>Cd (90%)>Zn(88.4%)>Mn (81.6%)>Ni(78.8%) and Cd (100%)>Cu(88%)>Ni (85.2%)>Pb (84%)>Zn (83.2%)>Mn (81.2%), respectively. The results also revealed that removal of dissolved metals is not influenced by pH changes and precipitation processes. The flocculation rates revealed that the overall dissolved metal pollution loads may be reduced to about 70% up to about more than 90% during estuarine mixing of Tadjan River with the Caspian Sea water.  相似文献   

13.
Reed (Phragmites australis), a commonly used macrophyte in the wetlands constructed for water purification, was investigated as a new biosorbent for the removal of Cu(2+), Cd(2+), Ni(2+), Pb(2+) and Zn(2+) from aqueous solution. The metal adsorption capacity of reed biomass was improved significantly by water-wash, base- and acid-treatment. The maximum sorption of NaOH-pretreated reed biomass was observed near neutral pH for Cu(2+), Cd(2+), Ni(2+) and Zn(2+), while that for Pb(2+) was from an acidic range of pH 4.0 or higher. The maximum metal adsorption capacity on a molar basis assumed by Langmuir model was in the order of Cu(2+)>Ni(2+)>Cd(2+)>Zn(2+)>Pb(2+). Reed biosorbent showed a very high adsorption affinity value, which helps predict its high ability to adsorb heavy metals at low concentration. Desorption of heavy metals and regeneration of the biosorbent was attained simultaneously by acid elution. Even after three cycles of adsorption-elution, the adsorption capacity was regained completely and the desorption efficiency of metal was maintained at around 90%.  相似文献   

14.
Chi J  Yang Q 《Water research》2012,46(8):2570-2578
To study the effects of submerged hydrophytes on the fate of dibutyl phthalate (DBP) and di-2-ethylexyl phthalate (DEHP) in the aquatic environment, a Potamogeton crispus L. (P. crispus) microcosm was constructed. A four-compartment (i.e., water, plant, non-rhizosphere and rhizosphere sediments) level IV fugacity model was established and applied to the simulation experiments in the microcosm. Data obtained from model calculations were in good agreement with those from the experiments. Results of the model calculations showed that the total residues of DBP and DEHP in the microcosm with P. crispus were 39.7% and 19.8% lower than those in the microcosm without P. crispus. The overall biodegradation fluxes of DBP and DEHP in the microcosm with P. crispus increased by 4.7% and 12.3%, respectively, and meanwhile, advective outflow decreased. In the presence of P. crispus, a large fraction of loaded DBP and DEHP (17.7% and 29.0%) transferred to plants, and then to the rhizosphere. 4.8% and 28.0% of loaded DBP and DEHP were removed by biodegradation in P. crispus, and the remaining 12.9% and 1.0% were by biodegradation in rhizosphere sediment which was 3.6% of the total sediment. This finding demonstrates that P. crispus can substantially reduce the accumulation of phthalic acid esters (PAEs) in the experiment system and enhance the removal of PAEs. The enhancement of PAE removal is related to the biodegradation of PAEs in P. crispus, especially for the more hydrophobic DEHP. For the less hydrophobic DBP, biodegradation in the rhizosphere also plays a key role. In addition to nutrient uptake from sediment, transport process between P. crispus and the rhizosphere has also a significant influence on the distribution and fate of PAEs in the aquatic environment.  相似文献   

15.
A study was made of the concentrations of the elements As, Cd, Cu, Hg, Mn, Ni, Pb and Zn in the sediments and biota of two adjacent estuaries, the Orwell and Stour, in eastern England. The Orwell Estuary, with its urbanized head, was more contaminated with heavy metals than the Stour Estuary. Generally, in both estuaries, concentrations of metals were highest towards the head and the mouth. Saltmarsh sediments accumulated higher concentrations of most metals than mudflat sediments. Metal concentrations in the biota showed marked interspecific differences; Mytilus edulis had higher concentrations of Cd, Littorina littorea higher concentrations of Cu and Mn and Arenicola marina higher concentrations of Hg. Invertebrates from the Orwell had higher metal concentrations than those from the Stour. Algae had generally lower levels of metals than invertebrates. Metal concentrations were greatest and more variable in the top 10 cm of sediment. Metals were at greatest concentrations in winter and lowest in summer in sediments, algae and invertebrates. Mercury concentration increased with size in the three invertebrate species studied, but Cd and Zn generally were at higher concentrations in younger animals. Comparisons of sediments with average shale values indicated anthropogenic enrichment with several metals but it was considered that only Pb, at some sites, and possibly Hg posed potential threats to the ecology of the estuaries.  相似文献   

16.
Native and transplanted mosses of the species Fontinalis antipyretica were studied to assess their capacity as biomonitors of heavy metals. Assays were carried out with transplanted mosses (sampled from an unpolluted control stream) exposed for 60 days to five streams polluted with heavy metals. At the same time, native mosses were collected from the exposure sites. Concentrations of N, P, K, Ca, Mg, S, Fe, Al, Ba, Cd, Co, Cr, Cu, Mn, Ni, Pb, V, and Zn were determined in the mosses (native and transplants), stream waters, and sediments of both exposure and control sites. The results showed that the transplanted mosses accumulated significantly more Al, Cr, Cu, Pb, V, and Zn than the native mosses. The concentrations of Co and Mn in all streams were significantly higher in the native mosses.  相似文献   

17.
Bi X  Feng X  Yang Y  Li X  Sin GP  Qiu G  Qian X  Li F  He T  Li P  Liu T  Fu Z 《The Science of the total environment》2007,387(1-3):257-268
Historical zinc smelting in Hezhang, southwestern China, has resulted in significant heavy metal contamination of the surrounding ecosystems. The Caohai wetland system, which is an important national nature reserve close to the Hezhang zinc smelting area, was investigated in the present study. Results showed that sediments from the Caohai wetland system have been seriously contaminated by Cd, Pb and Zn with the highest concentrations in the surface sediments being up to 71, 160 and 1,200 microg g(-1), respectively. The heavy metals in the sediments were strongly associated with the organic/sulphide and residual fractions. A more oxidized condition induced by aquatic plants tended to cause the Cd, Pb and Zn bound to the Fe-Mn oxide fraction to become more dominant. Pb isotopic compositions in the sediments indicated that the inventories of Pb in the Caohai wetland sediments were mainly derived from the historical zinc smelting in the Hezhang area, although other anthropogenic sources, such as the gasoline Pb, also made a substantial contribution to the Pb in the sediments. Heavy metal contamination in aquatic plants was also studied and the results indicated that heavy metals accumulated by plants may pose a potential threat to the higher trophic-level organisms, including humans.  相似文献   

18.
The effects of willow stand development on top soil properties of uncontaminated infrastructure spoil landfills (ISL) and contaminated dredged sediment landfills (DSL) were assessed. For the ISL, significant increases in Cd, Zn and organic C levels in the top soil (0-10 cm) were detected more than 20 years after disposal. The increases in Cd and Zn concentrations in the top soil were attributed to leaf-associated metal transfer and leaf fall: the relatively high Cd and Zn concentrations in willow leaves resulted in top soil enrichment for these elements. Higher absolute amounts of Cd, Zn and Mn were taken up and recycled during leaf fall on DSL than on ISL, but did not result in significant differences between top soil and deeper soil (10-30 cm) for the DSL. Direct comparison of top soil development between both types of sites is not possible due to differences in stand age and time since disposal. The DSL were characterised by a higher short-range variance for the Cd, Cr, Cu, Pb and Zn concentrations in the top soil than the ISL. During the first years of ripening and dewatering, significant sulphate leaching occurred in the top soil of the DSL.  相似文献   

19.
This study assessed the accumulation of metals in a horizontal subsurface flow constructed wetland treating domestic wastewater of 350 PE after three years of operation. Metal concentrations in the influent wastewater, effluent, sediment, leaves, stems, and belowground biomass of Phragmites australis were analysed. Spatial variations were assessed by sampling at increasing distance from the inlet and at different positions across the width of the reed bed. All metals except Fe and Mn were efficiently removed in the CW, total metal concentrations in the effluent complied with basic environmental quality standards for surface water, and dissolved metal concentrations were often lower than analytical detection limits. Removal efficiencies varied between 49% for Ni and 93% for Al. Export of dissolved Mn and particulate Fe occurred, probably related to redox conditions in the sediment. After 3 years of operation, the sediment in the inlet area was significantly contaminated with Zn, Cu, and Cd, whereas Pb could form a contamination problem within the near future. The Cr and Ni levels in the sediment were low throughout the entire reed bed. At this stage of operation, the contamination problem was still situated within the inlet area and metal concentrations in the sediment decreased towards background values further along the treatment path. An exponential decrease of the metal mass in the sediment and belowground biomass was seen for all metals except Mn. Contrary to the other metals, Mn concentrations in the sediment increased with distance. For all metals, less than 2% of the mass removed from the wastewater after passage through the reed bed is accumulated in the aboveground reed biomass. The sediment acts as the primary sink for metals.  相似文献   

20.
Clays (especially montmorillonite and bentonite) are widely used as barriers in landfills to prevent contamination of subsoil and groundwater by leachates containing heavy metals. For this reason it is important to study the adsorption of metals by these clays. The sorption of seven metals (Cd, Cr, Cu, Mn, Ni, Pb and Zn) on Na-montmorillonite was studied as a function of pH and in the presence of ligands, forming complexes of different stabilities with the metals of interest. The continuous column method was used as it better simulates natural conditions. The total capacity of Na-montmorillonite towards these metals was determined. The pH variations influence to a higher extent the concentrations of Cu, Pb and Cd in the effluent. Moreover the results suggest that complex formation hinders the sorption of the metals on the clay, with an increasing influence in the order: Mn < or = Pb < or = Cd < or = Zn < Ni < Cu < Cr. The evaluation of the total capacity of Na-montmorillonite shows that this clay is a good sorbent towards all examined metals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号