首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Parallel optical negabinary arithmetic based on logic operations   总被引:1,自引:0,他引:1  
Li G  Liu L  Shao L  Yin Y  Hua J 《Applied optics》1997,36(5):1011-1016
On the basis of signed-digit negabinary representation, parallel two-step addition and one-step subtraction can be performed for arbitrary-length negabinary operands. The arithmetic is realized by signed logic operations and optically implemented by spatial encoding and decoding techniques. The proposed algorithm and optical system are simple, reliable, and practicable, and they have the property of parallel processing of two-dimensional data. This leads to an efficient design for the optical arithmetic and logic unit.  相似文献   

3.
Wong KW  Cheng LM 《Applied optics》1994,33(11):2134-2139
We propose performing space-variant optical logic operations in a space-invariant optical system by selectively assigning encoding states that are operation dependent. With this method, encoders using liquid-crystal cells and liquid-crystal light valves to perform space-variant encoding for all 16 Boolean functions are designed. Multiple-instruction-multiple-data processing can then be realized in optical logic systems.  相似文献   

4.
5.
6.
An experimental investigation of the characteristics of an optoelectronic digital image recording system based on a charge-coupled photosensitive device is performed. The influence of the operating modes of the system on the statistical characteristics of its two-dimensional output signals is evaluated. A technique for estimating the resolution of the recording system and the measurement error of the displacement of an element of the image by means of optical target rods is developed. Translated from Izmeritel’naya Tekhnika, No. 4, pp. 29–33, April, 2009.  相似文献   

7.
Optical packet switching relies on the ability of a system to recognize header information on an optical signal. Unless the headers are very short with large Hamming distances, optical correlation fails and optical logic becomes attractive because it can handle long headers with Hamming distances as low as 1. Unfortunately, the only optical logic gates fast enough to keep up with current communication speeds involve semiconductor optical amplifiers and do not lend themselves to the incorporation of large numbers of elements for header recognition and would consume a lot of power as well. The ideal system would operate at any bandwidth with no power consumption. We describe how to design and build such a system by using passive optical logic. This too leads to practical problems that we discuss. We show theoretically various ways to use optical interferometric logic for reliable recognition of long data streams such as headers in optical communication. In addition, we demonstrate one particularly simple experimental approach using interferometric coinc gates.  相似文献   

8.
9.
A new platform technology is herein described with which to construct molecular logic gates by employing the hairpin-structured molecular beacon probe as a basic work unit. In this logic gate operation system, single-stranded DNA is used as the input to induce a conformational change in a molecular beacon probe through a sequence-specific interaction. The fluorescent signal resulting from the opening of the molecular beacon probe is then used as the output readout. Importantly, because the logic gates are based on DNA, thus permitting input/output homogeneity to be preserved, their wiring into multi-level circuits can be achieved by combining separately operated logic gates or by designing the DNA output of one gate as the input to the other. With this novel strategy, a complete set of two-input logic gates is successfully constructed at the molecular level, including OR, AND, XOR, INHIBIT, NOR, NAND, XNOR, and IMPLICATION. The logic gates developed herein can be reversibly operated to perform the set-reset function by applying an additional input or a removal strand. Together, these results introduce a new platform technology for logic gate operation that enables the higher-order circuits required for complex communication between various computational elements.  相似文献   

10.
The ever increasing demand for very fast and agile optical networks requires very fast execution of different optical and logical operations as well as large information handling capacities at the same time. In conventional binary logic based operations the information is represented by two distinct states only (0 and 1 state). It limits the large information handling capacity and speed of different arithmetic and optical logic operations. Tristate based logic operations can be accommodated with optics successfully in data processing, as this type of operation can enhance the speed of operation as well as increase the information handling capacity. Here in this communication the author proposes a new method to implement all-optical different logic gates with tristate logic using the frequency-encoding principle. The frequency encoding/decoding based optical communication has distinctly great advantages because the frequency is the fundamental character of an optical signal and it preserves its identity throughout the communication. The principle of the rotation of the state of polarization of a probe beam through semiconductor optical amplifier (SOA), frequency routing property of an optical add/drop multiplexer (AD) and high frequency conversion property of reflecting semiconductor optical amplifiers (RSOA) have been exploited here to implement the desired AND, OR, NAND and NOR logic operations with tristate logic.  相似文献   

11.
We investigate all-optical logic operation in quantum-dot semiconductor optical amplifier (QD-SOA) based Mach–Zehnder interferometer considering the effects of two-photon absorption (TPA). TPA occurs during the propagation of sub-picosecond pulses in QD-SOA, which leads to a change in carrier recovery dynamics in quantum-dots. We utilize a rate equation model to take into account carrier refill through TPA and nonlinear dynamics including carrier heating and spectral hole burning in the QD-SOA. The simulation results show the TPA-induced pumping in the QD-SOA can reduce the pattern effect and increase the output quality of the all-optical logic operation. With TPA, this scheme is suitable for high-speed Boolean logic operation at 320 Gb/s.  相似文献   

12.
Kawata S  Hirose A 《Applied optics》2005,44(19):4053-4059
We propose an adaptive logic circuit whose function can be controlled by optical carrier frequency modulation. The circuit learns the desired functions by adjusting the delay time at a spatial light modulator with a complex-valued Hebbian learning rule. After the learning, the circuit can switch its function all at once. A high degree of mechanical stability is achieved by spatial phase-difference coding. Two orthogonal phase components are detected in parallel spatially. Experiments demonstrate that the system works as an AND circuit at a certain frequency and as an XOR at another. The proposal will enhance the design of optical plastic cell architectures.  相似文献   

13.
Future digital optical communication cannot develop without all-optical high-speed optical devices, especially in the field of high speed large capacity optical transmission, all-optical packet switching and optical computing, and thus optical logic devices are becoming a hotter spot of research. Based on the cross-gain modulation (XGM), a novel scheme of all-optical logic XNOR gate using linear optical amplifier (LOA) is presented in this paper. LOA results show a good gain characteristic, which can get better output logic operation than traditional semiconductor optical amplifier (SOA). Choosing suitable injection current, wavelength scope of the input signal and CW power can achieve better logic operation effect.  相似文献   

14.
Wu CJ  Liu CP  Ouyang Z 《Applied optics》2012,51(5):680-685
An optical logic NOT gate (OLNG) is presented based on photonic crystal (PhC) waveguides without nonlinear materials and optical amplifiers. Also, a way of determining the operating parameters is presented. It is demonstrated through finite-difference time-domain simulations that the structure presented can operate as an OLNG. The optimized contrast ratio, defined as the logic-"1" output power divided by the logic-"0" output power, is found to be 297.07 or 24.73 dB. The size of the OLNG can be as small as 7a×7a, where a is the lattice constant of the PhC. Further, the OLNG presented in this paper can operate at a bit rate as high as 2.155 Tbit/s, which is much higher than that of electronic or optical logic gates developed until now. Moreover, as it is not based on the nonlinear effect, the OLNG can operate at very low powers and a relatively large operating bandwidth. This is favorable for large-scale optical integration and for developing multiwavelength parallel-processing optical logic systems.  相似文献   

15.
We describe the design of Fourier-type phase-only array generators. The numerical optimization employs the Fienup algorithm, where the parageometric design of the phase retardation profile, with the form of a lenslet array, is used as the initial guess of the optimization process. This approach provides designs with high performance that can be obtained with comparatively low computing effort. This is particularly true for elements generating large spot arrays. For symmetric reconstruction fields, the optimized phase profile typically has the same symmetry as that for the reconstruction field and can be easily unwrapped.  相似文献   

16.
17.
基于数字希尔伯特变换的OCT信号处理与系统实现   总被引:2,自引:1,他引:2  
信号处理方法的选择是光学相干层析(OpticalCoherenceTomography,OCT)系统研制的重要环节,直接决定着OCT系统的硬件构建和实现。应用硬件实现OCT信号处理的方法虽然速度快,但存在硬件开销大,系统配置可调节性差等缺点。进而采用了基于数字希尔伯特变换的软件方法来处理OCT信号。该数字处理方法对探测得到的离散干涉实信号进行解析拓展,得到同时具有振幅信息和相位信息的复信号,其中的振幅信息被用于OCT的图像重建。介绍了研制的光纤OCT系统和各驱动单元的同步时序控制,最后给出了人体皮肤和洋葱的OCT高清晰层析图。  相似文献   

18.
Fast-response optical recording media based on semiconductor nanostructures (CdTe, GaAs) have been developed for image recording and processing at a speed of up to 106 cps, which is 2–3 orders of magnitude higher than the speed of well-known media based on liquid crystals (MIS-LC). The new media are characterized by a photosensitivity of 10?2 W/cm2 and a spatial resolution of 5–10 lines/mm. Methods for the readout of images recorded in the nanostructures are developed and high-speed incoherent-light optical processors based on these structures are created. The possibility of using these processors for building optical analog computers and image correlators is demonstrated.  相似文献   

19.
Konishi T  Tanida J  Ichioka Y 《Applied optics》1995,34(17):3097-3102
A novel technique, the visual-area coding technique (VACT), for the optical implementation of fuzzy logic with the capability of visualization of the results is presented. This technique is based on the microfont method and is considered to be an instance of digitized analog optical computing. Huge amounts of data an be processed in fuzzy logic with the VACT. In addition, real-time visualization of the processed result can be accomplished.  相似文献   

20.
Ultrafast-response (20 μs) UV detectors, which are visible-blind and self-powered, in devices where an n-type ZnO nanowire partially lies on a p-type GaN film, are demonstrated. Moreover, a CdSe-nanowire red-light detector powered by a nanoscale ZnO/GaN photovoltaic cell is also demonstrated, which extends the device function to a selective multiwavelength photodetector and shows the function of an optical logical AND gate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号