首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
以纤维素和氯化亚铁为主要原料,制备了一种新型的磁性纳米复合材料,用于吸附水溶液中的亚甲基蓝,探索了Fe_3O_4与纤维素的质量比、反应时间、吸附剂用量、亚甲基蓝初始浓度等对材料吸附性能的影响。结果表明,Fe_3O_4/纤维素复合材料吸附亚甲基蓝的最佳条件为:2 mL初始浓度10 mg/L的亚甲基蓝废水,Fe_3O_4/纤维素质量比为1∶8,吸附剂用量为8 mg,吸附反应时间为10 min。在此条件下,Fe_3O_4/纤维素复合材料对亚甲基蓝的去除率可达91%。Fe_3O_4/纤维素复合材料吸附亚甲基蓝的过程符合Langmuir模型。该新型复合材料的吸附性能和磁性能有力的结合,使其具有易分离、易回收且能够循环利用的特点。同时,该材料制作成本低、适宜大规模生产。  相似文献   

2.
《应用化工》2022,(1):68-72
以纤维素和氯化亚铁为主要原料,制备了一种新型的磁性纳米复合材料,用于吸附水溶液中的亚甲基蓝,探索了Fe_3O_4与纤维素的质量比、反应时间、吸附剂用量、亚甲基蓝初始浓度等对材料吸附性能的影响。结果表明,Fe_3O_4/纤维素复合材料吸附亚甲基蓝的最佳条件为:2 mL初始浓度10 mg/L的亚甲基蓝废水,Fe_3O_4/纤维素质量比为1∶8,吸附剂用量为8 mg,吸附反应时间为10 min。在此条件下,Fe_3O_4/纤维素复合材料对亚甲基蓝的去除率可达91%。Fe_3O_4/纤维素复合材料吸附亚甲基蓝的过程符合Langmuir模型。该新型复合材料的吸附性能和磁性能有力的结合,使其具有易分离、易回收且能够循环利用的特点。同时,该材料制作成本低、适宜大规模生产。  相似文献   

3.
用金属还原菌Shewanella oneidensis MR-1在Fe_3O_4微球表面原位还原Ag+形成了Ag/Fe_3O_4磁性复合材料。采用HRTEM、XRD、VSM、XPS对Ag/Fe_3O_4的结构和性能进行表征。结果表明:银纳米颗粒(约15 nm)较为均匀分散在Fe_3O_4微球(约380 nm)表面;在可见光照射下,Ag/Fe_3O_4具有较高的催化活性,50 min内对亚甲基蓝的降解率可达96.3%,较未负载Ag的Fe_3O_4微球的降解率提高了20.3%。Ag/Fe_3O_4在室温下呈现超顺磁性,饱和磁强度为34.9 emu/g,在外加磁场条件下能快速从溶液中分离;且复合材料表现出较好的循环稳定性,6次循环后其催化活性无明显变化。  相似文献   

4.
采用共沉淀-焙烧法制备了不同α-Fe_2O_3/Zn Fe_2O_4摩尔比的α-Fe_2O_3/Zn Fe_2O_4异质结复合粉体,考察了组分比对其光催化降解10 mg/L亚甲基蓝溶液活性的影响.结果表明,与单相α-Fe2O3或Zn Fe2O4相比,复合材料的光催化活性显著提高,α-Fe_2O_3/Zn Fe_2O_4摩尔比1:1时光催化性能最佳,光学带隙为1.94 e V,对太阳光谱的利用率约为41%,210 min内对亚甲基蓝溶液的降解率达99.65%.  相似文献   

5.
以酚醛树脂为炭前驱体、水热法合成的Fe_3O_4纳米微球为核,经研磨、干燥、炭化制备Fe_3O_4@C纳米核壳型微球。结果表明,包覆后的Fe_3O_4@C微球尺寸均匀且无团聚现象。碳包覆量影响着Fe_3O_4@C锂电池负极材料的电化学性能。20%为最佳包覆量,其首次放电比容量为984 mA·h/g,100次循环后放电比容量保持在413 mA·h/g。  相似文献   

6.
《应用化工》2022,(5):916-919
以Fe Cl_3·6H_2O和Fe SO_4·7H_2O为原料,氢氧化钠溶液为沉淀剂,制备了磁性Fe_3O_4粒子。采用XRD、SEM方法表征,并研究了Fe_3O_4粒子对亚甲基蓝的降解作用。结果表明,Fe_3O_4粒子平均粒径为5μm,以Fe_3O_4-H_2O_2组成类Fenton反应体系降解10 mg/L的亚甲基蓝溶液,当溶液p H值为3,浓度3%的H_2O_2用量为4 m L和0.2 g Fe_3O_4粉末,9 h内亚甲基蓝的降解率可达98.69%。  相似文献   

7.
《应用化工》2016,(5):916-919
以Fe Cl_3·6H_2O和Fe SO_4·7H_2O为原料,氢氧化钠溶液为沉淀剂,制备了磁性Fe_3O_4粒子。采用XRD、SEM方法表征,并研究了Fe_3O_4粒子对亚甲基蓝的降解作用。结果表明,Fe_3O_4粒子平均粒径为5μm,以Fe_3O_4-H_2O_2组成类Fenton反应体系降解10 mg/L的亚甲基蓝溶液,当溶液p H值为3,浓度3%的H_2O_2用量为4 m L和0.2 g Fe_3O_4粉末,9 h内亚甲基蓝的降解率可达98.69%。  相似文献   

8.
笔者采用了3种不同方式制备了磁性纳米Fe_3O_4颗粒,以光催化降解亚甲基蓝和罗丹明溶液为模型反应,对其光催化活性进行了探讨。试验制备出来的纳米Fe_3O_4颗粒具有良好的磁性能,且不同的方法制备出的纳米Fe_3O_4颗粒的光催化活性不同。用水解法制备出的纳米Fe_3O_4颗粒的光催化活性最差,无降解发生;用低温相转化法制备出的纳米Fe_3O_4颗粒的降解性能比较好,降解率达到70%~80%;共沉淀法制备出的纳米Fe_3O_4颗粒最好,粒径最小,其降解率高达96%。共沉淀法制备出的纳米Fe_3O_4颗粒具有磁性的特点,也易于分离回收,具有良好的应用前景。  相似文献   

9.
以葡萄糖和氯化铁为原料,通过水热反应法制备得到以Fe_3O_4为核,C为壳的核壳型磁性复合材料(C@Fe_3O_4),并以此为载体,通过戊二醛的交联作用将纳米TiO_2负载到C@Fe_3O_4上,得到磁性光催化剂TiO_2/C@Fe_3O_4。通过XRD、TGA、SEM及粒度分析仪分析了TiO_2/C@Fe_3O_4的物相和微观结构,并通过对亚甲基蓝溶液的降解研究其光催化和循环使用性能。结果表明,所制备的TiO_2/C@Fe_3O_4催化剂中TiO_2为锐钛矿型晶体,Fe_3O_4为尖晶石型晶体;TiO_2/C@Fe_3O_4催化剂为单分散微球,平均粒径为4.58μm,TiO_2的平均粒径为15.03 nm,并且均匀的负载在C@Fe_3O_4表面。紫外条件下,TiO_2/C@Fe_3O_4显示了良好的光催化性能及循环使用性能,TiO_2/C@Fe_3O_4对亚甲基蓝的最大降解率为97.5%,循环使用10次后,其最大降解率仅下降了5.9%。  相似文献   

10.
以离子液体([C_4MIM]BF_4)为辅助剂、铁酸钴为磁核,用水热法制备了可磁分离TiO_2/CoFe_2O_4新型复合光催化材料。利用X射线衍射、N_2吸附-脱附和透射电子显微镜对样品进行表征;以亚甲基蓝溶液为模拟污染物,在模拟太阳光下考察样品光催化性能。结果表明:加入离子液体制备的TiO_2/CoFe_2O_4样品具有介孔结构,TiO_2稳定的包覆在CoFe_2O_4上,其比表面积可达238.3 m~2/g;在模拟太阳光下照射2 h,对亚甲基蓝的降解率可达97.9%。样品经磁场回收后重复使用3次光降解率为96.1%,依然保持较高的光催化活性。  相似文献   

11.
以六亚甲基四胺(HMT)为导向剂,通过水热法,在不同温度下合成了六边形薄片状的高取向三元前驱体NixCoyMn1-x-y(OH)2,采用氯化钾与氯化钠的混合熔盐法对前驱体进行煅烧后得到高取向富锂正极材料。经X射线衍射、扫描电镜等表征,材料具有良好的层状结构,在(003)晶面具有很高的择优取向。电化学测试结果表明,在0.1C倍率下(20mA/g),材料的首次放电容量为282.5mAh/g;1C倍率下经30次循环放电容量从195.7 mAh/g降至178.8 mAh/g,容量保持率为91.4%;当倍率分别为2 C和5 C时,材料的放电容量分别为150.6 mAh/g和110.0 mAh/g。材料具有良好的循环稳定性和倍率性能。  相似文献   

12.
采用水热和沉淀两步合成法制备AgBr/Zn_3(OH)_2V_2O_7·2H_2O催化剂,研究其在可见光下降解亚甲基蓝溶液的性能,并考察催化剂用量、亚甲基蓝溶液初始浓度、p H值以及盐浓度对光催化性能的影响,评价AgBr/Zn_3(OH)_2V_2O_7·2H_2O催化剂的重复使用性能。结果表明,在前驱液pH为10、120℃水热10 h、Ag与Br物质的量比为0. 20条件下制备的复合催化剂在可见光下反应120 min后,1. 0 g·L~(-1)的催化剂对10 mg·L~(-1)的亚甲基蓝溶液脱色率达到85. 2%。NaCl对亚甲基蓝的降解起抑制作用,Na_2SO_4对亚甲基蓝的降解起促进作用。催化剂重复使用4次后,光照120 min后的亚甲基蓝溶液脱色率可达66. 4%。催化剂对不同初始浓度亚甲基蓝溶液的光催化降解符合一级动力学模型。  相似文献   

13.
将电解锰阳极泥高温焙烧,使MnO_2转变为Mn_2O_3。再利用醋酸铵将焙烧后阳极泥中的金属铅与其他重金属杂质浸出,得到纯净的Mn_2O_3。再将Mn_2O_3与碳酸锂制备成产品锰酸锂。对产品进行形貌与充放电性能表征。结果表明:产品首次充电比容量为104.898 mAh/g,首次放电比容量为102.753 mAh/g,首次可逆放电效率为97.96%。同时,产品经过100次循环后,其放电比容量由102.753 mAh/g下降为95.06 mAh/g,为首次放电容量的92.51%。  相似文献   

14.
本研究以氯化铁、柠檬酸钠及醋酸钠为原料,乙二醇为溶剂通过溶剂热的方法合成了直径为200-300纳米的四氧化三铁(Fe_3O_4)纳米球。然后通过单体吡咯低温下的聚合,使聚吡咯均匀分布在Fe_3O_4球体表面,最后经过碳化得到含氮碳包覆的Fe_3O_4纳米球。分别对Fe_3O_4纳米球与包覆碳层后的Fe_3O_4纳米球进行电化学性能测试。结果表明:包覆碳层之后的Fe_3O_4球表现出更稳定的循环性能,在100 mA g~(-1)的电流密度条件下,经过85圈的循环能够保持513mAh g~(-1)的比容量,从第二圈起每圈衰减平均为0.17%,比没有包覆的Fe_3O_4稳定性大大提高。  相似文献   

15.
利用改性沸石负载Fe_3O_4活化H_2O_2非均相Fenton体系氧化降解有机污染物亚甲基蓝。考察了催化剂改性沸石负载Fe_3O_4投加量、溶液初始pH和H_2O_2初始浓度对亚甲基蓝降解效果的影响,进而讨论Fe_3O_4/改性沸石-H_2O_2非均相Fenton体系的催化机理。结果表明,当催化剂投加量为2.40 g/L,初始溶液pH为5.33,H_2O_2浓度为5.93 mmol/L时,反应30 min后,9.60 mol/L的亚甲基蓝去除率可达到98.52%。通过自由基捕获剂抗坏血酸和羟基自由基捕获剂甲醇,证明了Fe_3O_4/改性沸石-H_2O_2体系的氧化物种为羟基自由基和过氧自由基。  相似文献   

16.
利用改性沸石负载Fe_3O_4活化H_2O_2非均相Fenton体系氧化降解有机污染物亚甲基蓝。考察了催化剂改性沸石负载Fe_3O_4投加量、溶液初始pH和H_2O_2初始浓度对亚甲基蓝降解效果的影响,进而讨论Fe_3O_4/改性沸石-H_2O_2非均相Fenton体系的催化机理。结果表明,当催化剂投加量为2.40 g/L,初始溶液pH为5.33,H_2O_2浓度为5.93 mmol/L时,反应30 min后,9.60 mol/L的亚甲基蓝去除率可达到98.52%。通过自由基捕获剂抗坏血酸和羟基自由基捕获剂甲醇,证明了Fe_3O_4/改性沸石-H_2O_2体系的氧化物种为羟基自由基和过氧自由基。  相似文献   

17.
通过碳炔类似物与单质硫共热的办法制备了多硫化碳炔,利用Raman、XRD等手段对其进行了表征。考察了多硫化碳炔分别在1 mol/L LiPF_6/EC DEC和1 mol/L LiClO_4/DOL DME电解液中的电化学性能,结果表明:多硫化碳炔在1 mol/L LiClO_4/DOL DME电解液中首次放电比容量为747 mAh/ g,60次循环比容量为236 mAh/g,容量保持率仅为31%,效率低于92%,容量衰减较快。在1 mol/L LiPF_6/EC DEC电解液中电池首放电比容量可达799 mAh/g,60次循环后比容量仍能到达520 mAh/ g,容量保持率可达65%,效率几乎100%,并讨论了多硫化碳炔在这两种电解液中的差异。  相似文献   

18.
本文合成了金属有机骨架材料Fe_3O_4@ZIF-67,并采用FTIR、VSM、SEM、TEM和EDS等方法对样品进行表征。以Fe_3O_4@ZIF-67为载体吸附亚甲基蓝,分别考察了载体用量、亚甲基蓝溶液pH值、溶液初始浓度等因素对亚甲基蓝吸附量的影响。结果表明,Fe_3O_4@ZIF-67材料对亚甲基蓝吸附的最佳条件为亚甲基蓝溶液浓度130 mg/L,振荡时间1 h,pH值为10,骨架材料投放量6mg,此时吸附量最大达334.53 mg/g。重复性实验结果表明,Fe_3O_4@ZIF-67材料至少可以重复利用7次。  相似文献   

19.
将纳米TiO2加入PVC糊中制备光催化PVC糊,研究不同种类及含量的纳米TiO2、亚甲基蓝溶液的浓度对光催化PVC糊制品光催化性能的影响.实验结果表明:含掺钨改性纳米TiO2的先催化PVC糊降解效果最明显;当纳米TiO2含量为8份时,亚甲基蓝溶液降解率最高;亚甲基蓝溶液的浓度为5 mg/L时,降解效果明显.  相似文献   

20.
以氧化铟(In_2O_3)纳米球作为基体,采用水热法制备了氧化铟/硫化镉(In_2O_3/CdS)复合光催化剂,并利用XRD、SEM等对所制备复合光催化剂进行了表征。结果表明:复合光催化剂由立方相的In_2O_3纳米球和六方相CdS棒状结构组成,且In_2O_3纳米球附着于CdS棒状结构表面上。光学性能测试和光降解实验发现:所得复合光催化剂与纯In_2O_3和纯CdS相比,不仅光响应范围增加,而且光催化亚甲基蓝(MB)的活性也得到显著改善。当In_2O_3/CdS中n(In_2O_3)∶n(CdS)=1∶4时,光催化效率改善尤为明显,当复合催化剂的质量为0.05 g时,MB转化率达到96.2%;这可能是由于CdS接受In_2O_3表面上的光生电子,减少了光生电子与空穴的复合机会,因而提高了光催化降解能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号