首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
LiNi1/3Co1/3Mn1/3O2作为一种新型的锂离子电池正极材料,其理论容量高达278mAh.g^-1,具有a—NaFeO2型层状结构,制备方法主要高温固相合成法、共沉淀法、流变相反应法、溶胶-凝胶法等,文章对制备方法进行了重点沦述,讨论了相应的电化学性能、结构特征和目前存在的问题,并对层状LiNi1/3Co1/3Mn1/3O2正极材料的发展进行了展望。  相似文献   

2.
通过浸渍法在正极材料LiNi1/3Co1/3Mn1/3O2的表面包覆MgF2,通过XRD、SEM、交流阻抗(EIS)分析、充放电测试研究了不同量MgF2包覆对LiNi1/3Co1/3Mn1/3O2正极材料的结构与电化学性能的影响。结果表明,MgF2以非晶态形式包覆于LiNi1/3Co1/3Mn1/3O2材料颗粒的表面,当包覆量为3%(物质的量分数,下同)时,三元正极材料具有优良的电化学性能,在3.0~4.6 V充放电范围内0.1C充放电倍率下,首次放电比容量为196.3 mA·h/g,1C循环50次后容量保持率为95.7%,55 ℃高温下1C循环50次后容量保持率为93.3%。  相似文献   

3.
采用共沉淀法和高温固相烧结相结合,合成了锂离子电池层状LiNi1/3Co1/3Mn1/3O2正极材料。采用ICP-AES元素分析方法、XRD和SEM对LiNi1/3Co1/3Mn1/3O2正极材料的成分、结构和形貌进行了表征。SEM测试结果表明,LiNi1/3Co1/3Mn1/3O2的形貌近似为球形,且颗粒分布均匀。并对其进行了充放电性能测试,结果表明:LiNi1/3Co1/3Mn1/3O2在25℃、2.5~4.6 V、0.1 C倍率下,首次放电容量达189.32 mAh.g-1(锂为负极),C/LiNi1/3Co1/3Mn1/3O2在1 C、2.75~4.2 V下,初始放电比容量为145.5 mAh/g,循环100次后,容量保持率为98.41%。是一种有发展前景的锂离子电池正极材料。  相似文献   

4.
层状结构材料LiNi1/3Co1/3Mn1/3O2具有高比容量、高循环性能、低成本和环保等优点,有望取代LiCoO2成为新一代锂离子电池正极材料。在介绍LiNi1/3Co1/3Mn1/3O2的结构特点和电化学反应特性的基础上,对其主要合成方法进行了详细评述,总结了该正极材料的阴阳离子掺杂、复合离子掺杂以及表面包覆改性等技术,指出国内外目前锂离子电池材料研究中存在的问题和未来的发展方向。  相似文献   

5.
层状结构LiNi1/3Co1/3Mn1/3O2正极材料制备过程与电化学性能   总被引:1,自引:0,他引:1  
采用固相自引发基团置换法结合高温焙烧制备了亚μm级的LiNi1/3Co1/3Mn1/3O2正极材料。研究了热处理气氛、烧结时间对材料结构及性能的影响。研究结果表明在空气氛围下900℃焙烧20 h制备的LiNi1/3Co1/3Mn1/3O2正极材料具有最佳的电化学性能。  相似文献   

6.
锂离子电池正极材料LiNi1/3Co1/3Mn1/3O2具有放电比容量大、热稳定性好、成本低、安全性能好等优点,但其倍率性能有待进一步提升。本文采用水热法制备了K+掺杂LiNi1/3Co1/3Mn1/3O2材料LNCM-xK。通过X射线衍射谱、场发射扫描电镜和X射线光电子能谱表征LNCM-xK的形貌和结构,通过电化学工作站和蓝电测试系统测试其电化学性能。结果表明:K+掺杂能有效降低阳离子混排程度,改善LiNi1/3Co1/3Mn1/3O2材料的电化学性能,其中当x=0.125时K+掺杂LiNi1/3Co1/3Mn1/3O2样品(LNCM-0.125K)阳离子混排程度最低;LNCM-0.125K样品电化学性能最佳,0.2 C下50次循环后容量保持率为96.15%;在不同电流密度(0.2 C,0.5 C,1 C,2 C,5 C)下进行倍率性能测试,连续充放电30次后LNCM-0.125K样品容量保持率为97.00%。  相似文献   

7.
用VGCF为模板,用共沉淀方法辅助合成了棒状结构的LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2。通过X-射线衍射仪(XRD)、X射线能谱仪(EDX)、扫描电子显微镜(SEM)对其结构进行了表征,并研究了其电化学性能。结果表明:该材料为棒状且表面多孔,并表现出了良好的电化学性能。在0. 2 C(1 C=170 m A/g)的电流密度下,其容量为160 m Ah/g以上,在1 C下经过250个循环后容量仍然有115. 2 m Ah/g,对于制备其他棒状结构的锂离子正极材料提供了一定的借鉴。  相似文献   

8.
9.
采用固相法和沉淀法合成了锂离子电池正极材料LiCo1/3Ni1/3Mn1/3O2探讨了合成温度、不同合成方法对材料的电化学性能的影响。利用充放电测试、循环伏安测试方法对合成的LiCo1/3Ni1/3Mn1/3O2进行了表征。结果表明,固相法900℃煅烧合成的材料电化学性能较好,沉淀法合成的材料电化学性能最好,以10.0mA/g的电流充放电,首次放电比容量为576.0C/g,循环50次后放电比容量仍保持501.5C/g。以100.0mA/g的大电流放电,放电比容量达到430.2C/g。  相似文献   

10.
分别以纳米氧化铝、氢氧化铝及异丙醇铝为原料,采用液相浸渍法对LiNi1/3Co1/3Mn1/3O2材料进行氧化铝包覆,考察不同包覆源在LiNi1/3Co1/3Mn1/3O2材料表面进行氧化铝包覆后对材料电化学性能的影响。SEM及XRD结果显示,产物为层状α-NaFeO2结构,氧化铝均匀包覆在LiNi1/3Co1/3Mn1/3O2材料表面。充放电性能测试结果表明,在3种铝源中,以异丙醇铝为包覆源的材料性能最佳:在3.0~4.6 V的电压下,0.1 C倍率下首次放电比容量为196.1 mA·h/g, 1 C下循环50周后容量保持率为95.6%。  相似文献   

11.
锂离子电池正极材料Li Ni1/3Co1/3Mn1/3O2具有比商业化正极材料——LiCoO2更低廉的成本、更低的毒性、更好的热稳定性,近年来受到广大科研工作者的关注。主要介绍了Li Ni1/3Co1/3Mn1/3O2正极材料的合成改性方法及其近年来在电化学性能方面所取得的成果和进展,并简要概括了该材料结构和发展趋势。不断提高Li Ni1/3Co1/3Mn1/3O2正极材料的振实密度以及电化学性能特别是其在高倍率充放电条件下的循环性能将成为相关科研工作者的研究重点。  相似文献   

12.
唐致远  余明远  薛建军  高飞 《化工进展》2007,26(3):396-399,404
采用溶胶凝胶法合成锂离子电池正极材料LiMn2O4、LiNi0.01Co0.01Mn1.98O4和LiNi0.01Co0.01Mn1.98O3.95F0.05。使用X射线衍射、扫描电子显微镜对合成材料的结构及物理性能进行了表征。将合成材料作为锂离子电池正极活性材料,用循环伏安、交流阻抗及充放电测试的电化学测试方法对材料进行了电化学的研究。结果表明,合成的LiNi0.01Co0.01Mn1.98O3.95F0.05材料的初始容量高于LiNi0.01Co0.01Mn1.98O4,而循环性能优于LiNi0.01Co0.01Mn1.98O4和LiMn2O4,显示了阴阳离子复合掺杂对于阳离子单一掺杂的优势。  相似文献   

13.
采用NH3-NaOH共沉淀法合成了L[Ni1/3Co1/3Mn1/3]O2正极材料,通过改变NH3·H2O浓度及加料方式研究材料的电化学性能.采用XRD、SEM对晶体的结构和形貌作表征.将正极材料Li[Ni1/3Co1/3Mn1/3]O2制成电极极片,组装成电池进行测试.分析测试结果表明,合成的极材料Li[Ni1/3Co1/3Mn1/3]O2具有典型的α-NaFeO2结构,粒径分布较好,呈类球形.  相似文献   

14.
采用微波共沉淀法合成了制备LiNi0.8Co0.2O2的前驱体球形α-Ni0.8Co0.2(OH)2,将其与LiOH·H2O混合,在氧气氛围下,用不同的烧结温度分别烧结10小时获得LiNi0.8Co0.2O2正极材料。用XRD、SEM对所制备的正极材料进行结构和形貌分析,用恒流充放电测试材料的电化学性能。结果表明,烧结温度对材料结构和电化学性能影响较大,所合成材料均具有α-NaFeO2的层状结构,烧结温度越高材料结晶越完善。900℃烧结的LiNi0.8Co0.2O2材料初级颗粒结晶最完善而且其二次团聚粒子的平均粒径最小,其表现出的电化学性能也最好,首次放电容量为189.1mA·h·g-1,首次循环放电效率达到92.5%。30循环后放电容量保持在148 mA·h·g-1,显示出较好的循环稳定性。  相似文献   

15.
综述了A1203包覆LiNi(1/3)Cows)Mn(1/3)O2锂离子电池正极材料的研究现状与进展,并评述了其制备方法和包覆改性:讨论了包覆改善该正极材料性能的机理:提出了这种正极材料的研发过程中的一些问题并对其未来的发展前景作了展望。  相似文献   

16.
采用溶胶凝胶法合成锂离子电池正极材料LiNi0.03Mn1.97O4,使用X射线衍射(XRD)、扫描电子显微镜(SEM)对合成材料的结构及物理性能进行了表征。将合成材料作为锂离子电池正极活性材料,考察烧结温度对其结构及电化学性能的影响。随着烧结温度的升高,尖晶石型结构越来越完整,初始放电比容量增大,但循环性能却逐渐变差。在750℃下烧结温度12h得到了性能较好的HNi0.03Mn1.97O4,首次放电比容量为118.7mA·h/g,50次循环后,其放电比容量仍保持在101.6mA·h/g,适合作为锂离子电池的正极材料。  相似文献   

17.
高键能异质原子的高效掺杂是稳定高电压LiNi0.5Co0.2Mn0.3O2(NCM)三元正极材料并提升其电化学性能的有效策略。借助含硼前体在二次颗粒表面富集及随后高温煅烧强化B3+体相扩散的策略,构建了硼离子高效掺杂NCM正极材料(NCM-B)。引入B—O键(键能:809 kJ·mol-1)抑制了电化学反应过程中晶格氧析出,进而稳定材料的氧离子框架;此外,表面残余的高锂离子导体Li2O-B2O3包覆层可以在一定程度上稳定电极-电解液界面。与改性前NCM相比,改性后的NCM-B正极材料在3.0~4.5 V电压区间的可逆比电容量可以达到193.7 mA·h·g-1,在10 C大功率下,比电容量仍保持120 mA·h·g-1(NCM仅为78.2 mA·h·g-1)。1 C下连续循环100圈后,比电容量保持率从73%提升到90%。表面富集和扩散强化的思想也有望实现其他正极材料的高效掺杂。  相似文献   

18.
采用共沉淀法制备了三元材料LiNi0.4Co0.2Mn0.4O2,掺杂不同比例铷进行改性,对其进行了结构表征,考察了其电化学性能. 结果表明,Li0.97Rb0.03Ni0.4Co0.2Mn0.4O2样品的结晶度较好,铷掺杂起到了稳定三元材料晶体结构的作用,有效改善了材料的电化学性能,5C倍率下放电比容量达130 mA?h/g.  相似文献   

19.
主要考察了电解液浸泡对Li Ni1/3Co1/3Mn1/3O2粉料的影响,通过扫描电镜(SEM)观察了不同条件下粉体的形貌,采用X射线衍射仪及拉曼光谱仪表征晶体的结构,并将样品组装成电池,比较了不同条件处理下样品的首次放电及倍率性能。结果表明,电解液浸泡对Li Ni1/3Co1/3Mn1/3O2的形貌和晶体结构影响较小,但对粉体的电阻率和电池的容量有较大影响,而且随着浸泡温度的升高,其粉体电阻率和放电比容量均下降。  相似文献   

20.
层状结构Li[Ni1/3Co1/3Mn1/3]O2是目前国内外锂电池正极材料的研究热点。制备这种三元系材料的方法是热点中的重点。本文主要综述了不同的制备方法以及这些方法的简单对比,并探讨了Li[Ni1/3Co1/3Mn1/3]O2的应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号