首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Density (and some viscosity) data are presented for binary sodium borate melts containing as much as 60 mole % Na2O and for ternary sodium silicoborate melts with B/Si <2.0 between 1000°C and 1300°C. The high-temperature partial molar volume analysis of the binary sodium borate melts reveals about 50% BO4 tetrahedra at the 40 mole % Na2O composition, in agreement with recent NMR estimates for the binary glasses. No "boron anomaly" was found near 18 mole % Na2O at high temperature. The synthetic partial molar volume model that agrees best with experiment for all ternary melts studied involves the presence of some BO4 tetrahedra, the percentage of which varies with composition. This ternary model involves a high degree of internal consistency. No tendency toward extensive micro-immiscibility was observed for ternary melts near the SiO2·B2O3 binary.  相似文献   

2.
The phase relations in the pseudobinary system sodium fluoride-mullite have been investigated as a model system for fluoride attack on fire clay refractories in aluminum electrolysis cells. The phase composition below the solidus temperature 857°C changes from sodium fluoride, cryolite, nepheline, and ß-alumina to cryolite, albite, silica, and α-alumina with increasing oxide content. Albite was not observed to crystallize and an increasing amount of glass was observed with increasing mullite content. The phase diagram of the ternary system sodium fluoride-cryolite-nepheline was also measured in order to describe the composition of the most stable melt along the sodium fluoride-mullite composition join. The present findings are discussed in relation to the deterioration mechanism of fire clay refractories during fluoride attack. The formation of viscous albite-based melts is suggested to increase the resistance toward fluoride attack due to the reduced diffusion rate of fluorides.  相似文献   

3.
SiO2-Al2O3 melts containing 42 and 60 wt% A12O3 were homogenized at 2090°C (∼10°) and crystallized by various heat treatment schedules in sealed molybdenum crucibles. Mullite containing ∼78 wt% A12O3 precipitated from the 60 wt% A12O3 melts at ∼1325°± 20°C, which is the boundary of a previously calculated liquid miscibility gap. When the homogenized melts were heat-treated within this gap, the A12O3 in the mullite decreased with a corresponding increase in the Al2O3 content of the glass. A similar decrease of Al2O3 in mullite was observed when crystallized melts were reheated at 1725°± 10°C; the lowest A12O3 content (∼73.5 wt%) was in melts that were reheated for 110 h. All melts indicated that the composition of the precipitating mullite was sensitive to the heat treatment of the melts.  相似文献   

4.
Effects of manganese oxide on the initial sintering kinetics of compacts of 5-μ diameter alumina were studied by isothermal shrinkage measurements from 1450° to 1650°C. The observed rates were characterized by assuming a volume-diffusion mechanism. Variations in sintering rate with both oxygen partial pressure in the furnace and impurity concentration, as well as the observed activation energy, indicated oxygen-ion diffusion was the rate-limiting step during densification.  相似文献   

5.
Solid-state reactions between Li2O and Al2 O3 were studied in the region between Li2O.Al2 O 3 and Al2 O 3. The compound Li2 O Al2 O 3 melts at 1610°± 15°C. and undergoes a rapid reversible inversion between 1200° and 1300°C. Vaporization of Li2 O from compositions in the system proceeds at an appreciable rate at 1400°C, as shown by fluorescence. Lithium spinel, Li2 O -5Al2O3, was the only other compound observed. The effect of Li2 O on the sintering of alumina was investigated.  相似文献   

6.
Phase relations in the system Sc2O3-WO3 were characterized. Two stable binary compounds were, found. The 1:3 compound, SC2(WO4)3, melts congruently at 1640°±10°C and forms a simple eutectic with WO3 at ∼90 mol% WO3 and 1309°+10°C. The 3 : 1 compound, Sc6WO12, forms a simple eutectic with the 1:3 compound at -69 mol% WO2, and 1580°+10°C. The melting temperature of SC6WO12 was >1600°C.  相似文献   

7.
Phase relations in the systems alkali monotungstate-tungsten trioxide were investigated in the range 600° to 1100°C.In the Li system, compounds with an A2O/WO3 ratio of 1:2 and 1:4 are stable and melt incongruently at 745° and 805°C, respectively. In the Na system, the 1:2 compound melts congruently at 746°C, whereas the other 2 sodium tungstates (1:4 and 1:6) melt incongruently at 835° and 913°C, respectively. The K system includes compounds of 1:2, 1:3, 1:4, and 1:6 which melt incongruently at 684°, 842°, 912°, and 964°C, respectively. Eutectic points between the 1:l and 1:2 compounds in these respective systems are at 692°C and 56 mol%WO3, 622°C and 56.3 mol% WO3, and 633°C and 63 mol%WO3. In the Rb and Cs systems, the 1:2 and 1:3 compounds form complete solid-solution series, and their melting temperatures increase with increasing WO3 content, respectively, from 690° to 868°C and from 732° to 902°C. The 1:6 compounds are also stable in these systems and melt incongruently at 1040° and 1046°C, respectively.  相似文献   

8.
Subsolidus phase equilibria in the system La2O3-P2O5 were established. The system contains six intermediate compounds having molar La2O3:P2O5 ratios of 3:1,7:3,1:1,1:2,1:3, and 1:5. It was found that the 3:1 compound has a phase transformation at 935°C. The 1:2 compound decomposes to a mixture of 1:1 and 1:3 at 755°C. The 1:3 compound melts incongruently to 1:1 and liquid at 1235°C and the 1:5 compound melts congruently at 1095°C. None of the lanthanum phosphates have lower temperature limits of stability.  相似文献   

9.
Equilibrium phase diagrams for the systems NdCl3–CaCl2 and NdCl3–NaCl were determined by differential thermal analysis. A simple eutectic was observed at 59 ± 1 mol% CaCl2 and 600°± 2°C in the NdCl3–CaCl2 system. A compound NaCl.3NdCl3 which melts incongruently at 545°± 5°C to NdCl3 and a liquid containing approximately 47 mol% NaCl, and a eutectic at 68 mol% NaCl and 439°± 2°C were found in the NdCl3–NaCl system. On the basis of agreements between the activities calculated by the Clausius–Clapeyron equation and Temkin's model using the present data for the NdCl3–CaCl2 system and the literature data for the PrCl3–CaCl2 system, the melts in the former system consist of Nd3+, Ca2+, and Cl ions and in the latter system of Pr3+, Ca2+, and Cl ions. The above approach indicates the presence of Na+, Cl, and NdCl2-5 ions in the NaCl-rich melts and Nd3+, Cl, and NdCl4 in the NdCl3-rich melts in the NdCl3–NaCl system. Analogous ions were indicated in the melts of the PrCl3–NaCl system.  相似文献   

10.
By means of Raman spectroscopy the melting behavior of 15Na2CO3−10BaCO3−75SiO2 batches with different grain sizes of raw materials was investigated both qualitatively and quantitatively. The results show that the reaction rate at low temperatures ( T ≤800° to 900°C) increases when finer grains of all raw materials are used; upon pelletizing the fine batch the reaction rate increases even further. At high temperatures ( T > 900°C) the grain size of SiO2 is the main determining factor, the melting rate being increased when fine SiO2 grains are used.  相似文献   

11.
Subsolidus phase relations in the system Ba0-Ti02-Ge02 were investigated using conventional solid-state reaction techniques and X-ray powder diffraction. The existence of 2 ternary compounds, BaTiGe309 and BazTiGeZ08, was confirmed and their X-ray crystallographic data are presented. The compound BaTiGe309 has a lower limit of stability at 1135°C and melts incongruently at 1232°C; Ba2TiGe2O2 melts congruently at 1228°C. Subsolidus compatibility relations in the ternary system were established and tie lines between the various phases which constitute a total of 12 compatibility triangles at 1000°C are shown in a subsolidus phase diagram.  相似文献   

12.
The quenching technique was used to study subliquidus and subsolidus phase relations in the pseudobinary system Na2 Ti2Si2 O11-Na2 Ti2 Si2 O9. Both narsarukite (Na2TiSi4O11) and lorenzenite (Na2Ti2Si2O9) melt incongruently. Narsarsukite melts at 911°±°C to SiO2+liquid, with the liquidus at 1016°C. Lorenzenite melts at 910°±5°C to Na2 Ti6 O13+liquid; Na2 Ti6 O13 reacts with liquid to form TiO2 and is thus consumed by 985°±5°C. The liquidus occurs at 1252°C.  相似文献   

13.
The Phase relations of the system Gd2O3-Ta2O5 in the composition range 50 to100 mol% Gd2O3 was studied by solidstate reactions at 1350°, 1500°, or 1700°C and by thermal analyses up to the melting temperatures. Weberite-type orthorhombic phase (W2 phase, space group C2221) with the composition of Gd3 TaO7 seems to melt incongruently; at about 2040°C, although this Gd3TaO7 Phase was previously reported to melt congruently. A new fluorite-type cubic phase (F phase, space group Fm3m ) was found for the first time above 1500°C in the system. It melts congruently with the composition of about 80mol% Gd2O3at 2318° 3°C. A phase diagram was proposed for the system Gd2O3–Ta2O5 in the Gd2O3–rich portion  相似文献   

14.
A tentative phase diagram for the system Al203-Nd2O3 is presented. Three compounds were obtained: a β -A12O3-type compound, the perovskite NdAlO3, and Nd4Al2O9. The perovskite melts congruently (mp 2090°C), and the two other compounds exhibit incongruent melting behavior: β -Nd/Al2O3, mp 1900°C; Nd4Al2O9, mp 1905°C. Two eutectics exist with the following compositions and melting points: 80 mol% Al2O3, 1750°C; 23 mol% Al2O3,1800°C. Nd4Al2O9 decomposes in the solid state at 1780°C.  相似文献   

15.
Phase equilibria in the system MgO-B2O3 were investigated using DTA and quenching techniques. The system contains 4 invariant points. The compounds MgO·2B2O3 and 2MgO·B2O3 melt incongruently at 995° and 1312°C, respectively, whereas 3MgO·B2O3 melts congruently at 1410°C. A eutectic occurs at 1333°C and 71% MgO.  相似文献   

16.
Density and viscosity results are presented for ternary Na2O·GeO2·B2O3 melts (∼600° to 1300°C) and glasses containing as much as 35 mole % Na2O. Synthetic partial molar volume models indicate a fairly broad stability region for BO4 tetrahedra in the B2O3-rich melts. Similar models for GeO2-rich melts reveal a more limited stability region for GeO6 octahedra. The expansion coefficient contours and viscosity isotherms confirm the volume-based conclusions for the liquid state. The high-temperature volume models were used to develop glass volume models that agree to within several percent of experiment. It has been concluded that the melts and glasses possess similar structures. The relatively greater compositional stability of GeO6 octahedra in the presence of B2O3 (compared to Al2O3) can be related to the smaller average number of oxygens around boron (III), at a fixed O/Ge ratio, compared to aluminum (III). Evidence is presented for a slight decrease of the thermal stability of GeO6 octahedra in the GeO2-rich melts above about 1000°C.  相似文献   

17.
The Li2O-TiO2 pseudobinary phase diagram was determined from 50 to 100 mol% TiO2 by DTA, microscopy, and X-ray analysis; Li2Ti3O7 effectively melts congruently at 1300° and decomposes eutectoidally at 940°C. A solid solution based on Li2TlO3 from 50 to ∼65 mol% TiO3 was observed to exist at >930°C. A new metastable phase was discovered with a composition of ∼75 mol% TiO2 and with a hexagonal unit cell (8.78 by 69.86 × 10−1nm). Discrepancies in the literature regarding some of these phase equilibria are reconciled.  相似文献   

18.
An induction furnace design which readily permits the determination of melting points and basic phase studies is described. The melting point of MgO was redetermined to be 2825°C., and the melting point of Cr2O3 is reported as 2330° and 2315°C. in air and in nitrogen atmospheres, respectively.  相似文献   

19.
Phase relations in the binary system between SiO2-P2O5 and SiO2 were investigated by the quenching method using sealed platinum tubes to prevent the loss of P2O5. The compound Si02-P2O5 exists in two forms, the low-temperature β form inverting sluggishly but reversibly to the high-temperature β form at 1030°C. The β form melts congruently at 1290°C. The compound 2SiO2-P2O5 melts incongruently at 1120°C to a silica-rich liquid and SiOa-P2O5. In the region between 5 and 25 mole % PO2, reactions were so sluggish that no data could be obtained by quenching.  相似文献   

20.
Manganese ferrite and α-Fe2O3 particles were precipitated within silicate melt systems to produce very unusual magnetic properties. Assemblies of particles of both kinds behaved super-paramagnetically when the particle size was small enough. As the particle size was increased, the magnetic properties of the ferrite system increased, but those of the α-Fe2O3 system decreased; the latter is expected from Néel's theory of a net spontaneous magnetic moment created by uncompensated magnetic sublattices at very small particle sizes. Liquid-in-liquid phase separation was pronounced in the manganese ferrite-glass systems, which may have influenced the precipitation behavior. Room-temperature initial mass susceptibilities were as high as 2 × 10 −2 cgs, and specific magnetizations as high as 26 gauss/g were observed. Precipitation of α-Fe2O3 particles exhibiting super-paramagnetic behavior was possible only with very low-viscosity melts. Initial mass susceptibility values changed by as much as a factor of 30 between 296° and 77°K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号