共查询到19条相似文献,搜索用时 78 毫秒
1.
针对传统的相关匹配算法计算量大,对图像旋转敏感等问题,提出了一种位平面和尺度不变特征变换(SIFT)相结合的图像匹配算法。将待拼接的两幅图像[A、][B]各自分解为8个位平面,对两幅图像都选择前4个具有视觉信息的位平面[A1A2A3A4]和[B1B2B3B4];对[A1A2、][A2A3、][A3A4]图像进行异或运算,得到3幅图像。由于异或后的图像[A1A2]具有足够的细节部分,轮廓却不清晰,图像[A3A4]轮廓清晰,但是丢失了太多细节,而图像[A2A3]具有清晰的轮廓,又具有足够的细节信息,所以采用图像[A2A3],然后与原图像[A]进行异或得到[A],同时采用同样的方法得到图像[B],再次采用SIFT算法进行点对匹配,利用欧氏距离进行图像匹配,最后利用RANSAC进行图像容错处理,得到一幅匹配图像。实验结果表明,该算法有效地提高了匹配速度,对图像明暗变化、尺度旋转等具有较强的健壮性。 相似文献
2.
3.
针对SIFT算法的工程实现问题,详细分析了该算法原理和执行过程.在对SIFT算法原理进行分析时,充分结合Rob Hess的SIFT源代码,并将SIFT算法应用到实际图像的特征提取和匹配中.实验结果表明,SIFT算法提取的特征点对图像缩放、视点变化等具有很好的适应性和准确性,可以应用到图像识别及图像重建等领域. 相似文献
4.
ASIFT具有完全仿射不变性,但计算耗时;ORB实时性好,但仿射不变性差。为了在图像匹配中同时兼顾仿射不变性和实时性,利用模拟相机在不同视点下成像的手段使得ORB具备完全仿射不变性,进而提出了一种基于ORB的快速完全仿射不变图像匹配新算法(AORB)。首先通过模拟相机在不同视点下成像以获取模拟的图像,然后用快速的ORB算法对所有模拟的图像对进行匹配,最终取得完全仿射不变性。实验结果表明,该算法能够满足完全仿射不变图像匹配需求,并且相比基于OpenMP的ASIFT计算速度提高了约6倍。 相似文献
5.
6.
一种透视不变的图像匹配算法 总被引:3,自引:0,他引:3
针对ASIFT (Affine scale invariant feature transform) 算法存在的仿射采样策略、采样点离散设置等问题,提出了一种基于粒子群优化的图像透视不变特征PSIFT (Perspective scale invariant feature transform)算法. 该算法通过虚拟相机的透视采样来模拟景物在多视角图像中的变形. 在此基础上,将图像匹配问题转换为透视变换的优化问题,并以粒子群算法为工具,研究了虚拟相机旋转参数搜索空间、适应值函数的合理设定. 针对三组不同类型低空遥感图像的实验结果表明,该算法比ASIFT、SIFT (Scale invariant feature transform)、Harris affine和MSER (Maximally stable extremal regions)等算法获得更多的特征匹配对,有效地提高了算法对视角变化的鲁棒性. 相似文献
7.
求解地貌图像匹配点对是地貌反求测量过程中的核心问题之一.针对地貌图像的特点,选用基于SIFT 特征图像匹配算法,并根据其算法特点在Vc+ +环境下编写了匹配程序.对地貌模型图像在视角变化、光照不一致等情况下,进行大量实验表明,该方法具有稳定、快速、高效的特点. 相似文献
8.
《计算机应用与软件》2016,(7)
经典的SIFT算法具有良好的尺度、旋转、光强不变特性而广泛应用于图像匹配。图像特征点较少时,匹配过程使用穷举法查找最近邻匹配点;当图像特征点较多时采用KD-Tree结构,而其检索过程存在"回溯"现象,这两种方法的匹配效率都不高。为了提高特征点的匹配速度,提出改进的SP-Tree结构解决"回溯"问题。在结点集分割时设置参数合理确定左右超平面位置,引入平衡因子作为结点分割方法选择的依据,采用近似最近邻搜索算法加快特征点匹配速度。给出算法的详细实现过程,并应用两幅图像进行验证。实验结果表明:SIFT特征向量采用改进SP-Tree结构在损失少部分匹配点的同时,提高了SIFT特征点的整体匹配速度,适合于图像特征的实时匹配过程。 相似文献
9.
立体匹配是计算机视觉领域最活跃的研究课题之一,针对传统SIFT描述符在图像存在多个相似区域时易造成误匹配和Daisy的匹配效率会因200维的描述符而降低的问题,提出一种SIFT和Daisy相结合的立体匹配算法。该方法利用SIFT算法生成关键特征点,利用Daisy描述符自身具有的良好的旋转不变性,对特征点进行描述,利用特征描述符欧氏距离的最近邻匹配和种子区域增长得到视差图。实验结果表明,该方法匹配精度高,速度快,在部分遮挡、视点变化引起的图像变形等问题上有更好的表现。 相似文献
10.
针对SIFT方法在角点检测上的不足,提出了一种基于SIFT和SUSAN混合特征匹配的自动匹配算法。算法应用SIFT和SUSAN两种具有互补特性的局部不变特征,利用SIFT方法检测空间极值特征点,利用SUSAN方法检测角点,结合两种特征点位置,利用SIFT方法生成匹配特征向量,最后根据最近邻特征点距离与次近邻特征点距离之比确定初始匹配点对,实现图像的配准。实验表明该算法有效,能够提高图像的自动匹配准确性。 相似文献
11.
直接用SIFT算法对较模糊图像进行关键点提取时,提取的关键点个数较少且进行下一步匹配时错误匹配较多。提出一种基于SIFT特征的匹配算法,首先利用拉普拉斯算子对图像进行锐化处理,使其边缘得到突出,然后利用SIFT算法进行关键点提取,最后利用双向匹配算法进行图像匹配。实验结果表明,利用本文算法进行匹配比直接用SIFT算法进行匹配时的匹配点数更多,匹配效果更好。 相似文献
12.
图像直方图不变特征在影像匹配定位中的应用 总被引:19,自引:2,他引:19
图像的直方图在影像的亮度及对比度发生变化时,可以保持基本不变.基于此,提出了由图像直方图的不变特征进行影像匹配的算法,使匹配的稳定性提高且大大减少了匹配时间. 相似文献
13.
14.
在互联网电子商务领域中,随着电商用户量的激增,各种问题不断涌现。其中,同行业的卖家抄袭复制其他店铺信息的事件也经常发生,而抄袭的图像信息相较于文字信息更难以检测出相似性,因为抄袭者往往有可能会将图像信息进行剪裁、旋转、加滤镜,或者用PS等技术进行处理,使得处理后的图像不容易检测出与原图相似。而人工比对效率低下,且成本高,这就需要一个以能快速计算出商品图像相似度的算法为基础的系统来解决这个问题。SIFT(Scale-invariant Feature Transform)描述子具有尺度不变性,能够解决传统算法对于旋转后图像相似度较低的局限性,且该描述子所描述的特征信息量大。本文在介绍传统图像哈希算法的基础上,提出使用基于SIFT描述子的近似最邻近匹配算法用于电钻商品图像相似度比较。对电钻商品原图进行剪裁、增加滤镜、增加对比度、旋转和增加水印等操作生成新的图片,将这些新的图片分别和原图进行相似度对比。实验结果表明,基于SIFT描述子的近似最邻近匹配算法与哈希算法、原始SIFT算法相比有比较好的精度,能够比较准确地识别出抄袭的图像信息。 相似文献
15.
SIFT算法是一种经典的图像匹配方法,但也存在计算量大、时间复杂度高的问题.针对这些问题,本文提出了一种改进的SIFT算法,将SIFT算法中表示关键点的特征信息结构进行改造,重新生成了一种新的有序结构.此结构将128维向量描述子根据关键点的8个梯度索引方向分成8组,产生新的有序描述子.重构之后的算法,减少了关键点匹配的计算量,从而提高算法的效率.实验表明,改进的算法,保持了原算法的优点以及在不降低原算法匹配精度的情况下,算法效率有明显提升. 相似文献
16.
图像匹配是PCB板缺陷检测中的一个重要环节,匹配效果的好坏直接影响着系统的检测结果和检测精度;为了取得良好的匹配效果和降低对系统硬件的精度要求,文章采用了SIFT匹配算法来进行图像匹配;首先应用SIFT算法获取匹配结果,然后计算出精确变换矩阵进行像素异或运算,最后运用数学形态学的方法消除边缘噪声;实验结果表明SIFT算法能够对存在畸变的图像取得良好的匹配效果,准确检测出缺陷. 相似文献
17.
SIFT(Scale Invariant Feature Transform)是目前最流行的局部特征提取及匹配算法.但传统SIFT算法采用欧氏距离来度量特征之间的SSD(Sum of Square Differences)并进行匹配,而传统的欧氏距离不能使高维特征向量恢复到具有低维的几何结构,导致错误匹配.为了克服这缺点,利用扩散距离代替欧氏距离进行匹配,然后使用随机抽样一致从候选匹配中排除错误的匹配.实验表明:该方法在图像形变、光照变化和图像噪声方面优于原方法. 相似文献
18.
19.
针对传统SIFT算法在匹配时出现实时性差、匹配量低以及RANSANC算法在剔除SIFT误匹配对时误匹配率高的问题,提出一种基于距离相对性的分块匹配算法和基于仿射不变性的误匹配对剔除算法。首先利用传统SIFT算法提取图像中的特征点;然后采用基于距离相对性的分块匹配算法进行特征匹配得到初始匹配对;由于初始匹配对中存在误匹配,接下来运用基于仿射不变性的误匹配对剔除算法来剔除误匹配对;最后,在不同图像变换下进行仿真实验。实验结果表明,算法在保持SIFT算法鲁棒性的基础上,能够得到更多匹配对,正确匹配率提高了10%左右,并且实时性也得到很大改善。 相似文献