首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In an effort to assess the constructability and performance of bridges with fiber-reinforced polymer (FRP) composite decks, the short-term and long-term responses of a 207 m, five-span bridge retrofitted with four different FRP panel systems were monitored. The overall aspects of the panel systems, connection details, and construction techniques are presented prior to presentation of the observed and measured responses. Key design parameters (impact factors, girder distribution factors, and level of composite action) for FRP and reinforced concrete decks are evaluated. This paper demonstrates that FRP replacement decks are a viable alternative to reinforced concrete decks and identifies the differences in performances of various FRP deck systems. Two of the FRP panel systems were found to perform considerably better than the other deck systems. Issues that may reduce the service life of FRP deck systems are presented and discussed.  相似文献   

2.
Innovative fiber-reinforced polymer (FRP) composite highway bridge deck systems are gradually gaining acceptance in replacing damaged/deteriorated concrete and timber decks. FRP bridge decks can be designed to meet the American Association of State Highway and Transportation Officials (AASHTO) HS-25 load requirements. Because a rather complex sub- and superstructure system is used to support the FRP deck, it is important to include the entire system in analyzing the deck behavior and performance. In this paper, we will present a finite-element analysis (FEA) that is able to consider the structural complexity of the entire bridge system and the material complexity of an FRP sandwich deck. The FEA is constructed using a two-step analysis approach. The first step is to analyze the global behavior of the entire bridge under the AASHTO HS-25 loading. The next step is to analyze the local behavior of the FRP deck with appropriate load and boundary conditions determined from the first step. For the latter, a layered FEA module is proposed to compute the internal stresses and deformations of the FRP sandwich deck. This approach produces predictions that are in good agreement with experimental measurements.  相似文献   

3.
A hybrid concept of composite sandwich panel with hybrid fiber-reinforced polymer (FRP)—steel core was proposed for bridge decks in order to not only improve stiffness and buckling response but also be cost efficient compared to all glass fiber-reinforced polymer (GFRP) decks. The composite sandwich bridge deck system is comprised of wrapped hybrid core of GFRP grid and multiple steel box cells with upper and lower GFRP facings. Its structural performance under static loading was evaluated and compared with the ANSYS finite element predictions. It was found that the presented composite sandwich panel with hybrid FRP-steel core was very efficient for use in bridges. The thickness of the hybrid deck may be decreased by 19% when compared with the all GFRP deck. The failure mode of the proposed hybrid deck was more favorable because of the yielding of the steel tube when compared with that of all GFRP decks.  相似文献   

4.
This paper addresses the laboratory and field performance of multicellular fiber-reinforced polymer (FRP) composite bridge deck systems produced from adhesively bonded pultrusions. Two methods of deck contact loading were examined: a steel patch dimensioned according to the AASHTO Bridge Design Specifications, and a simulated tire patch constructed from an actual truck tire reinforced with silicon rubber. Under these conditions, deck stiffness, strength, and failure characteristics of the cellular FRP decks were examined. The simulated tire loading was shown to develop greater global deflections given the same static load. The failure mode is localized and dominated by transverse bending failure of the composites under the simulated tire loading as opposed to punching shear for the AASHTO recommended patch load. A field testing facility was designed and constructed in which FRP decks were installed, tested, and monitored to study the decks’ in-service field performance. No significant loss of deck capacity was observed after more than one year of field service. However, it was shown that unsupported edges (or free edges) are undesirable due to transitional stiffness from approach to the unsupported deck edge.  相似文献   

5.
In addition to their high strength and light weight, fiber-reinforced polymer (FRP) composite reinforcing bars offer corrosion resistance, making them a promising alternative to traditional steel reinforcing bars in concrete bridge decks. FRP reinforcement has been used in several bridge decks recently constructed in North America. The Morristown Bridge, which is located in Vermont, United States, is a single span steel girder bridge with integral abutments spanning 43.90 m. The deck is a 230 mm thick concrete continuous slab over girders spaced at 2.36 m. The entire concrete deck slab was reinforced with glass FRP (GFRP) bars in two identical layers at the top and the bottom. The bridge is well instrumented at critical locations for internal temperature and strain data collection with fiber-optic sensors. The bridge was tested for service performance using standard truck loads. The construction procedure and field test results under actual service conditions revealed that GFRP rebar provides very good and promising performance.  相似文献   

6.
Currently within the military there is a need for a universal light-weight bridge deck system capable of supporting extreme loads over a wide temperature range. This research presents the development, testing, and analysis of five different fiber-reinforced polymer (FRP) webbed core deck panels. The performance of the FRP webbed decks are compared with an existing aluminum deck and with a baseline balsa core system, which has previously been tested as part of the development of the composite army bridge for the US Army. The study shows that for one-way bending, the FRP webbed core can exceed the shear strength of the baseline balsa core by a factor of 3.2 at a core’s density, which is 28% lighter than the balsa baseline. In addition, weight savings in excess of 30% are shown for using FRP decking in place of conventional aluminum decking. Based on test results and finite-element analysis, the failure modes of the different FRP webbed cores are discussed and design recommendations for FRP webbed core decks are provided.  相似文献   

7.
The finite-element method (FEM) has been employed to study the structural behavior of the fiber-reinforced polymer (FRP) bridge deck. The numerical results were verified with the field-test results provided by New York State Department of Transportation. Fully coupled thermal-stress analyses were conducted using the FEM to predict the failure mechanisms and the “fire resistance limit” of the superstructure under extreme thermal loading conditions. Furthermore, damage simulations of the FRP deck as a result of snow and ice plowing process were performed to investigate any possibility of bridge failure after damage occurs. Thermal simulations showed that FRP bridge decks are highly sensitive to the effect of elevated temperatures. The FRP deck approached the fire resistance limit at early stages of the fire incident under all cases of fire scenarios. The damage simulations due to the snow plowing showed minimal possibility of bridge failure to take place under the worst-case damage scenario when the top 5 mm of the FRP deck surface was removed. The results of both phases of simulations provide an insight into the safety and the reliability of the FRP systems after the stipulated damage scenarios were considered. Moreover, this paper provides discussions concerning the recommended immediate actions necessary to repair the damaged region of FRP deck panels and possible use of the bridge after the damage incident.  相似文献   

8.
The application of fiber-reinforced composites (FRP) is gaining momentum as an alternative material for bridge replacement, repair, and rehabilitation. While a number of states now use FRP, a lack of standards, codes, and performance data for FRP bridge decks has resulted in the use of FRP technology not being widely accepted. This paper presents the performance results, based on acoustic emission (AE), of six full-scale glass FRP bridge deck panels with nominal cross-sectional depths varying from 152 mm (6 in.) to 800 mm (30 in.). The objective was to develop for use during in-service field inspections an AE monitoring strategy that will determine the structural performance of the deck. As such, the characterization of damage, e.g., fiber breakage, matrix cracking, and delamination, was part of the investigated criteria and the contributing factors for identification of a monitoring strategy. Although some factors were determined to be associated with the performance evaluation of the structural integrity of the decks, further investigation is needed.  相似文献   

9.
Fiber reinforced polymer (FRP) composite bridge decks are gaining the attention of bridge owners because of their light self-weight, corrosion resistance, and ease of installation. Constructed Facilities Center at West Virginia University working with the Federal Highway Administration and West Virginia Department of Transportation has developed three different FRP decking systems and installed several FRP deck bridges in West Virginia. These FRP bridge decks are lighter in weight than comparable concrete systems and therefore their dynamic performance is equally as important as their static performance. In the current study dynamic tests were performed on three FRP deck bridges, namely, Katy Truss Bridge, Market Street Bridge, and Laurel Lick Bridge, in the state of West Virginia. The dynamic response parameters evaluated for the three bridges include dynamic load allowance (DLA) factors, natural frequencies, damping ratios, and deck accelerations caused by moving test trucks. It was found that the DLA factors for Katy Truss and Market Street bridges are within the AASHTO 1998 LRFD specifications, but the deck accelerations were found to be high for both these bridges. DLA factors for Laurel Lick bridge were found to be as high as 93% against the typical design value of 33%; however absolute deck stress induced by vehicle loads is less than 10% of the deck ultimate stress.  相似文献   

10.
The design and construction of bridge systems with long-term durability and low maintenance requirements is a significant challenge for bridge engineers. One possible solution to this challenge could be through the use of new materials, e.g., fiber-reinforced polymer (FRP) composites, with traditional materials that are arranged as an innovative hybrid structural system where the FRP serves as a load-carrying constituent and a protective cover for the concrete. This paper presents the results of an experimental investigation designed to evaluate the performance of a 3/4 scale hybrid FRP-concrete (HFRPC) bridge deck and composite connection under sustained and repeated (fatigue) loading. In addition, following the sustained-load and fatigue portions of the experimental study, destructive testing was performed to determine the first strength-based limit state of the hybrid deck. Results from the sustained-load and fatigue testing suggest that the HFRPC deck system might be a viable alternative to traditional cast-in-place reinforced concrete decks showing no global creep behavior and no degradation in stiffness or composite action between the deck and steel girders after 2 million cycles of dynamic loading with a peak load of 1.26 times the scaled tandem load (TL). Furthermore, the ultimate strength test showed that the deck failed prior to the global superstructure at a load approximately six times the scaled TL.  相似文献   

11.
No appropriate provisions from either AASHTO Standard (2002) or AASHTO LRFD (2004) bridge design specifications are available for the design of fiber-reinforced polymer (FRP)-deck-on-steel-superstructure bridges. In this research, a parametric study using the finite-element method (FEM) is conducted to examine two design issues concerning the design of FRP-deck-on-steel-superstructure bridges, namely deck relative deflection and load distribution factor (LDF). Results show that the strip method specified in AASHTO LRFD specification as an approximate method of analysis, can also be applied to FRP decks as a practical method. However, different strip width equations have to be determined by either FEM or experimental methods for different types of FRP decks. In this study, one such equation has been derived for the Strongwell deck. In addition, both FEM results and experimental measurements show that the AASHTO LDF equations for glued laminated timber decks on steel stringers provide good estimations of LDF for FRP-deck-on-steel-superstructure bridges. Finally, it is found that the lever rule can be used as an appropriately conservative design method to predict the LDF of FRP-deck-on-steel-superstructure bridges.  相似文献   

12.
The research presented in this paper evaluates the flexural performance of bridge deck panels reinforced with 2D fiber-reinforced polymer (FRP) grids. Two different FRP grids were investigated, one reinforced with a hybrid of glass and carbon fibers and a second grid reinforced with carbon fibers only. Laboratory measured load-deflection, load-strain (reinforcement and concrete), cracking, and failure behavior are presented in detail. Conclusions regarding failure mode, limit-state strength, serviceability, and deflection compatibility relative to AASHTO mandated criteria are reported. Test results indicate that bridge decks reinforced with FRP grids will be controlled by serviceability limit state and not limit-state ultimate strength. The low axial stiffness of FRP results in large service load flexural deflections and reduced shear strength. In as much as serviceability limits design, overreinforcement is recommended to control deflection violation. Consequently, limit-state flexural strength will be compression controlled for which reduced service stresses or ACI unified compression failure strength reduction factors are recommended.  相似文献   

13.
Since bridge deck slabs directly sustain repeated moving wheel loads, they are one of the most bridge elements susceptible to fatigue failure. Recently, glass fiber-reinforced polymer (FRP) composites have been widely used as internal reinforcement for concrete bridge deck slabs as they are less expensive compared to the other kinds of FRPs (carbon and aramid). However, there is still a lack of information on the performance of FRP–reinforced concrete elements subjected to cyclic fatigue loading. This research is designed to investigate the fatigue behavior and fatigue life of concrete bridge deck slabs reinforced with glass FRP bars. A total of five full-scale deck slabs were constructed and tested under concentrated cyclic loading until failure. Different reinforcement types (steel and glass FRP), ratios, and configurations were used. Different schemes of cyclic loading (accelerated variable amplitude fatigue loading) were applied. Results are presented in terms of deflections, strains in concrete and FRP bars, and crack widths at different levels of cyclic loading. The results showed the superior fatigue performance and longer fatigue life of concrete bridge deck slabs reinforced with glass FRP composite bars.  相似文献   

14.
An experimental study of principal strains and deflections of glass fiber-reinforced polymer (GFRP) composite bridge deck systems is presented. The experimental results are shown to correlate well with those of an analytical model. While transverse strains and vertical deflections are observed to be consistent, repeatable, and predictable, longitudinal strains exhibit exceptional sensitivity to both strain sensor and applied load location. Large, reversing strain gradients are observed in the longitudinal direction of the bridge deck. GFRP deck system geometry, connectivity, material properties, and manufacturing imperfections coupled with the observed strains suggest that the performance of these structures should be assessed under fatigue loading conditions. Recommendations for accurately assessing longitudinal strain in GFRP bridge decks are made, and a review of existing data is suggested.  相似文献   

15.
Composite materials are clearly having a major impact on how facilities are designed, constructed, and maintained. In order to enhance the application of fiber-reinforced composites in infrastructure renewal, it will be important to understand the constructability, maintainability, operability, and inspection issues related to the use of fiber-reinforced polymer (FRP) structural components. This paper identifies these issues as well as fabrication issues, construction methods, quality, man-hour requirements, cost and productivity issues, and the skill level required to install FRP bridge deck panels. The data required for this research were collected through two questionnaire studies, personal interviews with two manufacturers of FRP bridge deck panels (i.e., Hardcore Composites and Martin Marietta Composites), and candidate projects for FRP bridge deck construction.  相似文献   

16.
Moveable bridges in Florida typically use open steel grid decks due to weight limitations. However, these decks present rideability, environmental, and maintenance problems, as they are typically less skid resistant than a solid riding surface, create loud noises, and allow debris to fall through the grids. Replacing open steel grid decks with a lightweight fiber-reinforced polymer (FRP) deck can improve rideability and reduce maintenance costs, simultaneously satisfying the strict weight requirement for such bridges. In this investigation, a new low-profile, pultruded FRP deck system successfully passed the preliminary strength and fatigue tests per AASHTO requirements. Two two-span deck specimens were tested, one with the strong direction of the deck placed perpendicular to the supporting girders, whereas the other had a deck placed with 30° skew. This paper also describes a simplified finite-element approach that simulates the load–deformation behavior of the deck system. The results from the finite-element model showed a good correlation with the deflection and strain values measured from the tests.  相似文献   

17.
A 45-year old, three-span reinforced concrete slab bridge with insufficient capacity was retrofitted with 76.2- and 127-mm wide bonded carbon fiber-reinforced polymer (FRP) plates, 102-mm wide bonded carbon FRP plates with mechanical anchors at the ends, and bonded carbon FRP fabrics. The use of four systems in one bridge provided a unique opportunity to evaluate field installation issues and to examine the long-term performance of each system under identical traffic and environmental conditions. Using controlled truckload tests, the response of the bridge before retrofitting, shortly after retrofitting, and after one year of service was measured. The stiffness of the FRP systems was small in comparison to the stiffness of the bridge deck, and accordingly the measured deflections did not change noticeably after retrofitting. The measured strains suggest participation of the FRP systems, and more importantly, the strength of the retrofitted bridge was increased. A detailed 3D finite-element model of the original and retrofitted bridge was developed and calibrated based on the measured deflections. The model was used to predict more accurately the demands for computing the rating factors. The addition of FRP plates and fabrics led to a 22% increase in the rating factor and corresponding load limits. During a one-year period, traffic loading and environmental exposure did not apparently affect the performance of the FRP systems. The increased capacity and acceptable performance of the FRP systems enabled the engineers to remove the load limits in order to resume normal traffic. Future tests are necessary to monitor the long-term behavior of the FRP systems.  相似文献   

18.
We examine here the replacement of a deteriorated concrete deck in the historic Hawthorne Street Bridge in Covington, Va. with a lightweight fiber-reinforced polymer (FRP) deck system (adhesively bonded pultruded tube and plate assembly) to increase the load rating of the bridge. To explore construction feasibility, serviceability, and durability of the proposed deck system, a two-bay section (9.45 by 6.7?m) of the bridge has been constructed and tested under different probable loading scenarios. Experimental results show that the response of the deck is linear elastic with no evidence of deterioration at service load level (HS-20). From global behavior of the bridge superstructure (experimental data and finite- element analysis), degree of composite action, and load distribution factors are determined. The lowest failure load (93.6?kips or 418.1?kN) is about 4.5 times the design load (21.3?kips or 94?kN), including dynamic allowance at HS-20. The failure mode is consistent in all loading conditions and observed to be localized under the loading patch at the top plate and top flange of the tube. In addition to global performance, local deformation behavior is also investigated using finite-element simulation. Local analysis suggests that local effects are significant and should be incorporated in design criteria. Based on parametric studies on geometric (thickness of deck components) and material variables (the degree of orthotropy in pultruded tube), a proposed framework for the sizing and material selection of cellular FRP decks is presented for future development of design guidelines for composite deck structures.  相似文献   

19.
Recently, there has been a rapid increase in using noncorrosive fiber-reinforced polymers (FRP) reinforcing bars as alternative reinforcement for bridge deck slabs, especially those in harsh environments. A new two-span girder type bridge, Cookshire-Eaton Bridge (located in the municipality of Cookshire, Quebec, Canada), was constructed with a total length of 52.08 m over two equal spans. The deck was a 200-mm-thick concrete slab continuous over four spans of 2.70 m between girders with an overhang of 1.40 m on each side. One full span of the bridge was totally reinforced using glass fiber-reinforced polymer (GFRP) bars, while the other span was reinforced with galvanized steel bars. The bridge deck was well instrumented at critical locations for internal temperature and strain data collection using fiber optic sensors. The bridge was tested for service performance using calibrated truckloads as specified by the Canadian Highway Bridge Design Code. The construction procedure and field test results under actual service conditions revealed that GFRP rebar provides very competitive performance in comparison to steel.  相似文献   

20.
The use of fiber-reinforced polymer (FRP) reinforcement is a practical alternative to conventional steel bars in concrete bridge decks, safety appurtenances, and connections thereof, as it eliminates corrosion of the steel reinforcement. Due to their tailorability and light weight, FRP materials also lend themselves to the development of prefabricated systems that improve constructability and speed of installation. These advantages have been demonstrated in the construction of an off-system bridge, where prefabricated cages of glass FRP bars were used for the open-post railings. This paper presents the results of full-scale static tests on two candidate post–deck connections to assess compliance with strength criteria at the component (connection) level, as mandated by the AASHTO Standard Specifications, which were used to design the bridge. Strength and stiffness until failure are shown to be accurately predictable. Structural adequacy was then studied at the system (post-and-beam) level by numerically modeling the nonlinear response of the railing under equivalent static transverse load, pursuant to well-established structural analysis principles of FRP RC, and consistent with the AASHTO LRFD Bridge Design Specifications. As moment redistribution cannot be accounted for in the analysis and design of indeterminate FRP RC structures, a methodology that imposes equilibrium and compatibility conditions was implemented in lieu of yield line analysis. Transverse strength and failure modes are determined and discussed on the basis of specification mandated requirements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号