首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The seismic response of typical multispan simply supported (MSSS) and multispan continuous steel girder bridges in the central and southeastern United States is evaluated. Nonlinear time history analyses are conducted using synthetic ground motion for three cities for 475 and 2,475-year return period earthquakes (10 and 2% probability of exceedance in 50 years). The results indicate that the seismic response for the 475-year return period earthquake would lead to an essentially linear response in typical bridges. However, the seismic response for a 2,475-year return period earthquake resulted in significant demands on nonductile columns, fixed and expansion bearings, and abutments. In particular, pounding between decks in the MSSS bridge would result in significant damage to steel bearings and would lead to the toppling of rocker bearings, which may result in unseating of the bridge deck.  相似文献   

2.
3.
4.
Many parts of the central and southeastern United States have recently begun initiating seismic retrofit programs for bridges on major interstate highways. One of the most common retrofit strategies is to provide cable restrainers at the intermediate hinges and abutments in order to reduce the likelihood of collapse due to unseating. To evaluate the force-displacement behavior of the cable restrainer retrofits, a full-scale bridge setup was constructed based on an existing multispan, simply supported steel girder bridge in Tennessee, that has been considered for seismic retrofit using cable restrainers. Seismic cable restrainers were connected to the bridge pier using steel bent plates, angles, and undercut anchors embedded in the concrete as specified by typical bridge retrofit plans. The full-scale bridge model was subjected to monotonic loading to test the capacity of the cable restrainer system and to determine the modes of failure. The results showed that the primary modes of failure are in the connection elements of the pier and girders, and they occur at force levels much lower than the strength of the cable. Modifications to the connection elements were designed and tested. The new connections resulted in a higher strength and deformation capacity of the cable restrainer assembly.  相似文献   

5.
Seismic evaluations of typical concrete girder bridges are conducted for both a multispan simply supported and a multispan continuous girder bridge common to the Central and Southeastern United States. These evaluations are performed for an approximate hazard level of 2% in 50?years by performing nonlinear time history analyses on three-dimensional analytical models. The results show significant vulnerabilities in the reinforced concrete columns, the abutments, and also in unseating of the girders. In general, the longitudinal loading of the bridges results in larger demands than the transverse loading. However, the simply supported bridge sustains bearing deformations in the transverse direction which are on the same order as their longitudinal response. These results suggest that both longitudinal and transverse loading are significant and should be considered when performing seismic hazard analyses of these bridges.  相似文献   

6.
This paper conducts a detailed review of the seismic hazard, inventory, bridge vulnerability, and bridge retrofit practices in the Central and Southeastern United States (CSUS). Based on the analysis of the bridge inventory in the CSUS, it was found that over 12,927 bridges (12.6%) are exposed to 7% probability of exceedance (PE) in 75-year peak ground acceleration (PGA) of greater than 0.20 g, and nearly 3.5% of bridges in the CSUS have a 7% PE in 75-year PGA of greater than 0.50 g. Since many of the bridges in this region were not designed with explicit consideration of the seismic hazard, many of them are in need of seismic retrofitting to reduce their seismic vulnerability. While several of the states in the CSUS have retrofitted some of their bridges, systematic retrofit programs do not currently exist. The review of retrofit practices in the region indicates that the most common retrofit approaches in the CSUS include the use of restrainer cables, isolation bearings, column jacketing, shear keys, and seat extenders. The paper presents an overview of the common approaches and details used for the aforementioned retrofit measures. This paper serves as a useful tool for bridge engineers in the CSUS as they begin to perform systematic retrofit of vulnerable bridges in the region.  相似文献   

7.
The seismic response of bridges isolated by elastomeric bearings and the sliding system is investigated under two horizontal components of real earthquake ground motions. The selected bridges consist of multispan continuous deck supported on the piers and abutments. Three different mathematical models of the isolated bridge are considered for the analytical seismic response by considering and ignoring the flexibility of the deck and piers. The mathematical formulation for seismic response analysis of various mathematical models of the bridges isolated by different isolation systems is presented. The accuracy and computational efficiency of various mathematical models of isolated bridges is investigated by comparing their responses under different system parameters and earthquake ground motions. The important parameters selected are the flexibility of deck, piers, and isolation systems. There was significant difference in the computational time required for different models, but it was observed that the seismic response of the bridges obtained from different equivalent mathematical models is quite comparable even for an unsymmetrical bridge. Thus, the earthquake response of a seismically isolated bridge can be effectively obtained by modeling it as a single-degree-of-freedom system (i.e., considering the piers and deck as rigid) supported on an isolation system in two horizontal directions.  相似文献   

8.
The increased failure potential of aging U.S. highway bridges and their susceptibility to damage during extreme events necessitates the development of efficient reliability assessment tools to prioritize maintenance and rehabilitation interventions. Reliability communication tools become even more important when considering complex phenomena such as soil liquefaction under seismic hazards. Currently, two approaches are widely used for bridge reliability estimation under soil failure conditions via fragility curves: liquefaction multipliers and full-scale two- or three-dimensional bridge-soil-foundation models. This paper offers a computationally economical yet adequate approach that links nonlinear finite-element models of a three-dimensional bridge system with a two-dimensional soil domain and a one-dimensional set of p-y springs into a coupled bridge-soil-foundation (CBSF) system. A multispan continuous steel girder bridge typical of the central and eastern United States along with heterogeneous liquefiable soil profiles is used within a statistical sampling scheme to illustrate the effects of soil failure and uncertainty propagation on the fragility of CBSF system components. In general, the fragility of rocker bearings, piles, embankment soil, and the probability of unseating increases with liquefaction, while that of commonly monitored components, such as columns, depends on the type of soil overlying the liquefiable sands. This component response dependence on soil failure supports the use of reliability assessment frameworks that are efficient for regional applications by relying on simplified but accepted geotechnical methods to capture complex soil liquefaction effects.  相似文献   

9.
Strong earthquakes can result in large longitudinal displacements in multiple-frame bridges. This could lead to excessive displacements/openings at the intermediate joints. Bridges with small seat widths are vulnerable to the unseating of their superstructure. Seismic steel restrainers are currently used to limit the joint openings in bridges. However, past earthquakes have shown that restrainer cables have limitations in regards to preventing unseating in bridges. Other devices have been proposed to limit joint displacements, including metallic dampers, viscoelastic dampers, and shape memory alloys (SMAs), which are known for their ability to recover their original shape after being deformed. A sensitivity study and a case study are conducted using computer simulations to compare the effectiveness of SMA retrofit devices with other devices. The results show that the effectiveness of the devices is a function of the characteristics of the bridge frames and the ground motion characteristics. In all cases, the steel restrainer cables were the least effective in limiting joint displacements. The SMA devices have the additional benefit of significantly limiting the residual joint displacement in bridges.  相似文献   

10.
Seismic Response of Isolated Bridges   总被引:3,自引:0,他引:3  
The seismic response of bridges seismically isolated by lead-rubber bearings (L-RB) to bidirectional earthquake excitation (i.e., two horizontal components) is presented in this paper. The force-deformation behavior of L-RB is considered as bilinear, and the interaction between the restoring forces in two orthogonal horizontal directions is duly considered in the response analysis. The specific purpose of the study is to assess the effects of seismic isolation on the peak response of the bridges, and to investigate the effects of the bidirectional interaction of restoring forces of isolation bearings. The seismic response of the lumped mass model of continuous span isolated bridges is obtained by solving the governing equations of motion in the incremental form using an iterative step-by-step method. To study the effectiveness of L-RB, the seismic response of isolated bridges is compared with the response of corresponding nonisolated bridges (i.e., bridges without isolation devices). A comparison of the response of the isolated bridges obtained by considering and ignoring the bidirectional interaction of bearing forces is made under important parametric variation. The important parameters included are the flexibility of the bridge piers and the stiffness and yield strength of the L-RB. The results show that the bidirectional interaction of the restoring forces of the L-RB has considerable effects on the seismic response of the isolated bridges. If these interaction effects are ignored, then the peak bearing displacements are underestimated, which can be crucial from the design point of view.  相似文献   

11.
Results of a recent bridge inventory evaluation indicated that about 50% of Turkish highway bridges have more than 30° of skew angle and can be classified as irregular bridges. During the recent major earthquake in Turkey, multisimple-span bridges with continuous decks and link slabs performed well even though these bridges were in the vicinity of the fault line. This study aims to evaluate the improvements in seismic response of skew bridges in terms of forces and displacements when link slabs are added as a retrofit tool. A series of elastic dynamic analyses and nonlinear time history analyses were conducted to investigate the seismic response of various standard highway bridges with different span lengths and skew angles. A new reinforcement design for edge zones of link slabs is proposed for bridges located in high seismic zones. In practice, link slabs can be implemented easily during a regular redecking of a bridge.  相似文献   

12.
Seismic Fragility of Continuous Steel Highway Bridges in New York State   总被引:2,自引:0,他引:2  
This paper presents the results of an analytical seismic fragility analysis of a typical steel highway bridge in New York State. The structural type and topological layout of this multispan I-girder bridge have been identified to be most typical of continuous bridges in New York State. The structural details of the bridge are designed as per New York State bridge design guidelines. Uncertainties associated with the estimation of material strength, bridge mass, friction coefficient of expansion bearings, and expansion-joint gap size are considered. To account for the uncertainties related to the bridge structural properties and earthquake characteristics, ten statistical bridge samples are established using the Latin Hypercube sampling and restricted pairing approach, and 100 ground motions are simulated numerically. The uncertainties of capacity and demand are estimated simultaneously by using the ratios of demands to capacities at different limit states to construct seismic fragility curves as a function of peak ground acceleration and fragility surfaces as a function of moment magnitude and epicentral distance for individual components using nonlinear and multivariate regressions. It has been observed that nonlinear and multivariate regressions show better fit to bridge response data than linear regression conventionally used. To account for seismic risk from multiple failure modes, second-order reliability yields narrower bounds than the commonly used first-order reliability method. The fragility curves and surfaces obtained from this analysis demonstrate that bridges in New York State have reasonably low likelihood of collapse during expected earthquakes.  相似文献   

13.
This paper describes the implementation and evaluation of a long-term strain monitoring system on a three-span, multisteel girder composite bridge located on the interstate system. The bridge is part of a network of bridges that are currently being monitored in Connecticut. The three steel girders are simply supported, whereas the concrete slab is continuous over the interior supports. The bridge has been analyzed using the standard AASHTO Specifications and the analytical predictions have been compared with the field monitoring results. The study has included determination of the location of the neutral axes and the evaluation of the load distributions to the different girders when large trucks cross the bridge. A finite-element analysis of the bridge has been carried out to further study the distribution of live load stresses in the steel girders and to study how continuity of the slabs at the interior joints would influence the overall behavior. The results of the continuous data collection are being used to evaluate the influence of truck traffic on the bridge and to establish a baseline for long-term monitoring.  相似文献   

14.
Modern highway bridges are often subject to tight geometric restrictions and, in many cases, must be built in curved alignment. These bridges may have a cross section in the form of a multiple steel box girder composite with a concrete deck slab. This type of cross section is one of the most suitable for resisting the torsional, distortional, and warping effects induced by the bridge’s curvature. Current design practice in North America does not specifically deal with shear distribution in horizontally curved composite multiple steel box girder bridges. In this paper an extensive parametric study, using an experimentally calibrated finite-element model, is presented, in which simply supported straight and curved prototype bridges are analyzed to determine their shear distribution characteristics under dead load and under AASHTO live loadings. The parameters considered in this study are span length, number of steel boxes, number of traffic lanes, bridge aspect ratio, degree of curvature, and number and stiffness of cross bracings and of top-chord systems. Results from tests on five box girder bridge models verify the finite-element model. Based on the results from the parametric study simple empirical formulas for maximum shears (reactions) are developed that are suitable for the design office. A comparison is made with AASHTO and CHBDC formulas for straight bridges. An illustrative example of the design is presented.  相似文献   

15.
A new highway system is being constructed in Chile including many bridges. Due to the high seismic risk in the country, high damping rubber bearings, friction bearings, and passive energy dissipation devices have been considered in the design of the majority of the new moderate and large span bridges. Their design follows American Association of State Highway guidelines and technical specifications from the Chilean Ministry of Public Works. Experimental and analytical studies have been performed in three of these structures: (1) a 383 m long continuous beam bridge supported on high damping rubber bearings; (2) a 268 m long continuous beam bridge supported on friction bearing with additional viscous dampers; and (3) a five-span simply supported beam bridge resting on neoprene bearings. Predominant periods and damping characteristics for small amplitude vibrations have been determined from output-only nonparametric analyses. Comparison with standard analytical structural models indicates that the models normally used for analysis yield comparable predominant periods and mode shapes but the damping values typically recommended are larger than the ones observed from ambient vibrations, even when additional energy dissipation elements are present.  相似文献   

16.
Recent earthquakes exposed the vulnerabilities of steel plate girder bridges when subjected to ground shaking. This paper discusses the behavior of steel plate girder bridges during recent earthquakes such as Petrolia, Northridge, and Kobe. The paper also discusses the recent experimental and analytical investigations that were conducted on steel plate girder bridges and their components. Results of these investigations showed the importance of shear connectors in distributing and transferring the lateral forces to the end and intermediate cross frames. Also, these investigations showed the potential of using end cross frames as ductile elements that can be used to dissipate the earthquake input energy. The paper also gives an update on specifications and guidelines for the seismic design of steel plate girder bridges in the United States.  相似文献   

17.
Elastomeric expansion bearings are often restrained laterally by retainers on each side. The retainers are in the form of a concrete shear block, rolled steel angles, or welded plates. To allow for longitudinal temperature movements, the retainers are placed with a slight clearance (gap) from the elastomer. The gap introduces nonlinearity in the seismic analysis of the bridge and, therefore, is often ignored by designers for the sake of simplicity. This paper compares the seismic response of straight and skewed slab-girder single-span bridges under the conditions of zero gap and standard gap for the retainers. Nonlinear time-history analysis is employed to measure the seismic demand on retainers, elastomers, and pinned bearings in each case. The stiffness of end-diaphragms and elastomeric bearings is included in the analysis. It is shown that these relationships are nonlinear in nature and depend on the frequency content of the input motion. It is also proved that ignoring the nonlinearity in the seismic bridge model can lead to erroneous results that are unsafe to use.  相似文献   

18.
Overheight vehicle collisions can cause major damage to bridges. To address the issue of limited vertical clearance heights and reduce the likelihood of impact damage, the Georgia Department of Transportation has implemented a program to elevate major highway bridges using very short columns referred to as steel pedestals. The process to elevate the bridges and install the steel pedestals is cost effective and efficient, resulting in minimum disruption to highway traffic. However, in practice, these pedestals are not detailed to provide end fixity, so they add considerable flexibility to the superstructure supports and potentially make the bridge more susceptible to instability and damage from seismic loads. Therefore, there is a need to evaluate how these steel pedestals will perform under the low-to-moderate earthquakes expected in this region. A full-scale 12.2?m (40?ft) dual steel girder simply supported bridge elevated with 500?mm (19?in.) and 850?mm (33?1/2?in.) steel pedestals is constructed based on typical field procedures. The full-scale bridge specimen is subjected to quasistatic unidirectional reversed cyclic loads to determine the strength and deformation capacity of the steel pedestals and overall system performance. The kinematics, mechanisms, and load–displacement hysteretic relationships of the bridge steel pedestals and its components are presented. Results show that the steel pedestals undergo kinematic rigid body motion, dissipate energy, and demonstrate reasonable deformation and strength capacities when subjected to quasistatic, reversed cyclic loads.  相似文献   

19.
Almost all the single reinforced concrete (RC) piers from P35 to P350 received consistently severe damage, considering the large residual inclination of piers included in earthquake-induced severe damage. However, some of the piers in the section from P35 to P350 remained lightly damaged, and this phenomenon is observed especially in many piers under fixed bearings in continuous girder bridges. In this study, using experimentally based models for metal bearings and installing them to an existing FEM code, a nonlinear dynamic response analysis of a continuous girder bridge system is conducted. It is shown that the results depend on the ground motion, but the fuse effect of the breaking of the bearings could have been a reason for the phenomenon.  相似文献   

20.
The structural response of deteriorated channel beam bridge girders and channel beam bridge decks with and without glass fiber reinforced polymer (GFRP) retrofit is found from design calculations, experimental load testing, and finite element analysis. Two different types of GFRP retrofit materials are investigated including a traditional fabric wrap and a new spray material. The effects of GFRP retrofit on channel beam bridge girder and channel beam bridge structural parameters are summarized and the accuracy of design calculation methods for quantifying structural response of channel beam bridge girders retrofit with GFRP is determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号