首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A 45-year old, three-span reinforced concrete slab bridge with insufficient capacity was retrofitted with 76.2- and 127-mm wide bonded carbon fiber-reinforced polymer (FRP) plates, 102-mm wide bonded carbon FRP plates with mechanical anchors at the ends, and bonded carbon FRP fabrics. The use of four systems in one bridge provided a unique opportunity to evaluate field installation issues and to examine the long-term performance of each system under identical traffic and environmental conditions. Using controlled truckload tests, the response of the bridge before retrofitting, shortly after retrofitting, and after one year of service was measured. The stiffness of the FRP systems was small in comparison to the stiffness of the bridge deck, and accordingly the measured deflections did not change noticeably after retrofitting. The measured strains suggest participation of the FRP systems, and more importantly, the strength of the retrofitted bridge was increased. A detailed 3D finite-element model of the original and retrofitted bridge was developed and calibrated based on the measured deflections. The model was used to predict more accurately the demands for computing the rating factors. The addition of FRP plates and fabrics led to a 22% increase in the rating factor and corresponding load limits. During a one-year period, traffic loading and environmental exposure did not apparently affect the performance of the FRP systems. The increased capacity and acceptable performance of the FRP systems enabled the engineers to remove the load limits in order to resume normal traffic. Future tests are necessary to monitor the long-term behavior of the FRP systems.  相似文献   

2.
The structural response of deteriorated channel beam bridge girders and channel beam bridge decks with and without glass fiber reinforced polymer (GFRP) retrofit is found from design calculations, experimental load testing, and finite element analysis. Two different types of GFRP retrofit materials are investigated including a traditional fabric wrap and a new spray material. The effects of GFRP retrofit on channel beam bridge girder and channel beam bridge structural parameters are summarized and the accuracy of design calculation methods for quantifying structural response of channel beam bridge girders retrofit with GFRP is determined.  相似文献   

3.
The feasibility and efficiency of a seismic retrofit intervention using externally bonded fiber-reinforced polymer composites on existing reinforced concrete frame systems, designed prior to the introduction of modern standard seismic design code provisions in the mid-1970s, are herein presented, based on analytical and experimental investigations on beam-column joint subassemblies and frame systems. A multilevel retrofit strategy, following hierarchy of strength considerations, is adopted to achieve the desired performance. The expected sequence of events is visualized through capacity-demand curves within M-N performance domains. An analytical procedure able to predict the enhanced nonlinear behavior of the panel zone region, due to the application of CFRP laminates, in terms of shear strength (principal stresses) versus shear deformation, has been developed and is herein proposed as a fundamental step for the definition of a proper retrofit solution. The experimental results from quasi-static tests on beam-column subassemblies, either interior and exterior, and on three-storey three-bay frame systems in their as-built and CFRP retrofitted configurations, provided very satisfactory confirmation of the viability and reliability of the adopted retrofit solution as well as of the proposed analytical procedure to predict the actual sequence of events.  相似文献   

4.
5.
6.
This study investigates the performance of new bridge columns wrapped with fiber reinforced polymers (FRP) when exposed to aggressive environmental conditions. This has been accomplished through field monitoring and laboratory tests. As part of the field monitoring, temperature data were collected at various locations of bridge columns. In addition, visual inspection of two bridges was performed periodically for over a period of two years. No evidence of deterioration of the FRP wraps was detected during that period. Laboratory tests were performed to investigate how FRP wraps protect reinforced concrete columns from corrosion, and freeze–thaw laboratory tests were conducted to study the impact of temperature cycles on the mechanical behavior of FRP-wrapped columns. From the corrosion experimental tests, it was found that FRP provides excellent protection against aggressive agents (salty water or moisture) even when a single layer is used. Compression tests were conducted on specimens subjected to freeze–thaw cycles. It was found that minor thermal cycles have no effect on the performance of FRP-wrapped concrete specimens. However, for large thermal cycles, some degradation of ductility in the axial and the hoop directions was observed.  相似文献   

7.
Hollow bridge piers are currently being used in high-speed rail and highway projects in Taiwan. The flexural ductility and shear capacity of such piers with the configuration of lateral reinforcement used in Taiwan has recently been studied.?This paper reports that circular and rectangular hollow bridge piers retrofitted by carbon fiber-reinforced polymer (CFRP) sheets were tested under a constant axial load and a cyclic reversed horizontal load to investigate their seismic behavior, including flexural ductility, dissipated energy, and shear capacity. An analytical model is also developed to predict the moment-curvature relationship of sections and the lateral load-displacement relationship of piers. Based on the test results, the seismic behavior of such piers is presented. The test results are also compared with the proposed analytical model. It was found that the ductility factors of the tested piers ranged from 3.3 to 5.5 and that the proposed analytical model could predict the lateral load-displacement relationship of such piers with reasonable accuracy. All in all, CFRP sheets can effectively improve both the ductility factor and the shear capacity of hollow bridge piers.  相似文献   

8.
This paper presents an innovative modular construction of bridge pier system with stay-in-place fiber reinforced polymer (FRP) forms filled with concrete. Two 1/6 scale precast modular frames were prepared of a prototype bridge pier system. Three different types of connections were considered: male-female, dowel reinforced with or without tube embedment, and posttensioned. The frames were load tested in negative and positive bending. Subsequently, the cap beams were cut from the frames and tested to failure in four-point bending. Posttensioned joints exhibited the most robust and ductile behavior and proved to be the preferred method of joining stay-in-place forms. Even with dowel bars, the male-female joints lacked the necessary structural integrity in the pier frames. Better surface preparation for FRP units and higher quality grouting may improve the response. Embedment of the columns into the footing provided additional stiffness for the connection. The study indicated that internal reinforcement is not necessary for the stay-in-place forms outside the connection zone. The experiments also showed the importance of maintaining appropriate tolerances and match casting for male-female and embedment connections. Overall, however, feasibility of the precast modular FRP system was demonstrated in this study.  相似文献   

9.
For reinforced concrete beams retrofitted with fiber-reinforced polymer (FRP) plates, an analytical method is derived for determining the allowable plate area to achieve a targeted value of ductility. Nonlinear models for concrete and reinforcement are applied, and the effects of concrete confinement and spalling and of FRP plate rupture are considered. The derivation of equilibrium and compatibility equations for a rectangular cross section is presented, and the solution to the nonlinear equation for determining the allowable plate area is demonstrated with examples. Analytical results are compared with numerical and experimental data reported in the literature. Subsequently a simplified version of the method is derived, based on regression analysis, to relate the curvature ductility to the FRP plate ratio. It is noted that additional conditions need to be checked to ensure ductile performance, such as local failure of the concrete layer between tension reinforcement and FRP plate or debonding of the plate itself.  相似文献   

10.
An experimental study is presented of the behavior of eight reinforced concrete bridge girders taken from a decommissioned Interstate bridge and retrofitted with three different carbon-fiber-reinforced polymer (CFRP) systems. Specimens were subjected to monotonic loading to failure with and without significant fatigue conditioning. Experimental observations indicated that intermediate crack-induced debonding was the dominant failure mode for monotonically loaded beams and that degradation of the CFRP-to-concrete interface was caused by fatigue conditioning. Conventional adhesive applied and near-surface mounted (NSM) CFRP systems behaved well under monotonic loads, with the NSM system exhibiting significantly greater ductility. Powder actuated fastener applied retrofit was observed to be less efficient, requiring a relative slip of the CFRP in order to engage the shear transfer mechanism of the fasteners. The application of current accepted design guidelines for FRP retrofit indicated that guidelines aimed at mitigating debonding failure appear to be appropriately conservative under monotonic loading conditions; however, a significant additional reduction in CFRP strain limits is required to account for even small levels of fatigue loading.  相似文献   

11.
This paper presents the results of an investigation of the monotonic and fatigue behavior of one-way and two-way reinforced concrete slabs strengthened with carbon fiber-reinforced polymer (CFRP) materials. The five one-way slab specimens were removed from a decommissioned bridge in South Carolina. Three of the slabs were retrofitted with CFRP strips bonded to their soffits and the other two served as unretrofit, control specimens. Of the five one-way slab specimens, one unretrofit and two retrofit slabs were tested monotonically until failure. The remaining two specimens, one unretrofit and one retrofit, were tested under cyclic (fatigue) loading until failure. In addition, six half-scale, two-way slab specimens were constructed to represent a full-scale prototype of a highway bridge deck designed using the empirical requirements of the AASHTO LRFD Bridge Design Manual. Of the six square slabs, two were unretrofitted and served as the control specimens, two were retrofitted using CFRP strips bonded to their soffits making a grid pattern, and two were retrofitted with a preformed CFRP grid material bonded to their soffit. Three slabs, one unretrofit, one CFRP strip, and one CFRP grid retrofitted, were tested monotonically until failure and the remaining three slabs were tested under cyclic (fatigue) loading until failure.  相似文献   

12.
This study examines the effects of one-dimensional fiber-reinforced polymer (FRP) composite rehabilitation systems on the flexural fatigue performance of reinforced concrete bridge girders. Eight 508?mm deep and 5.6?m long reinforced concrete T-beams, with and without bonded FRP reinforcement on their tensile surfaces, were tested with a concentrated load at midspan under constant amplitude cyclic loading. The objective of this investigation is to establish the effect that these repair systems have on the fatigue behavior and remaining life of the girders. Results indicate that the fatigue behavior of such retrofit beams is controlled by the fatigue behavior of the reinforcing steel. The fatigue life of a reinforced concrete beam can be increased by the application of an FRP retrofit, which relieves some of the stress carried by the steel. The observed increase in fatigue life, however, is limited by the quality of the bond between the carbon FRP and concrete substrate. Debonding, initiating at midspan and progressing to a support, is common and is driven partially by the crack distribution and shear deformations of the beam.  相似文献   

13.
Transportation departments have been using aluminum overhead sign structures since the 1950s. It is well documented that cracks develop in the welds between diagonal and chord members due to fatigue stresses from wind-induced vibration of the slender members. The cracks propagate to complete failure of the members, which can cause collapse of the truss and inflict injuries. The original design of overhead sign structures did not consider fatigue as a limit state. In addition, field welding of aluminum structures for any possible repairs is prohibited. A repair method for the cracked aluminum welded connections between diagonals and chord members using glass fiber reinforced polymer composites (GFRPs) is proposed. The static load carrying capacity of the welded connection, and the cracked connection repaired with GFRP composites are established. The paper describes the surface preparation of the aluminum tubular members, and the architecture and application sequence of the GFRP composite to retrofit the connection. Experimental results are presented from static tests of welded aluminum connections, welded aluminum connections retrofitted with GFRP composites, and new aluminum connections that depend only on GFRP composite elements for their strength. The results from monotonic static tests carried out on cracked welded specimens from actual sign structures show that the retrofitted connection with GFRP reinforcement achieved 1.17 to 1.25 times the capacity of the welded aluminum connection without any visible cracks. This result, and the minimal traffic disruption anticipated in the actual field application, makes this retrofit method a good candidate for implementation.  相似文献   

14.
Fiber reinforced polymer (FRP) composite bridge decks are gaining the attention of bridge owners because of their light self-weight, corrosion resistance, and ease of installation. Constructed Facilities Center at West Virginia University working with the Federal Highway Administration and West Virginia Department of Transportation has developed three different FRP decking systems and installed several FRP deck bridges in West Virginia. These FRP bridge decks are lighter in weight than comparable concrete systems and therefore their dynamic performance is equally as important as their static performance. In the current study dynamic tests were performed on three FRP deck bridges, namely, Katy Truss Bridge, Market Street Bridge, and Laurel Lick Bridge, in the state of West Virginia. The dynamic response parameters evaluated for the three bridges include dynamic load allowance (DLA) factors, natural frequencies, damping ratios, and deck accelerations caused by moving test trucks. It was found that the DLA factors for Katy Truss and Market Street bridges are within the AASHTO 1998 LRFD specifications, but the deck accelerations were found to be high for both these bridges. DLA factors for Laurel Lick bridge were found to be as high as 93% against the typical design value of 33%; however absolute deck stress induced by vehicle loads is less than 10% of the deck ultimate stress.  相似文献   

15.
This research studies the interaction of concrete, steel stirrups, and external fiber reinforced polymer (FRP) sheets in carrying shear loads in reinforced concrete beams. A total of eight tests were conducted on four laboratory-controlled concrete T-beams. The beams were subjected to a four-point loading. Each end of each beam was tested separately. Three types of FRP, uniaxial glass fiber, uniaxial carbon fiber, and triaxial glass fiber, were applied externally to strengthen the web of the T-beams, while some ends were left without FRP. The test results show that FRP reinforcement increases the maximum shear strengths between 15.4 and 42.2% over beams with no FRP. The magnitude of the increased shear capacity is dependent not only on the type of FRP but also on the amount of internal shear reinforcement. The triaxial glass fiber reinforced beam exhibited more ductile failure than the other FRP reinforced beams. This paper also presents a test model that is based on a rational mechanism and can predict the experimental results with excellent accuracy.  相似文献   

16.
Fiber reinforced polymer (FRP) materials are currently produced in different configurations and are widely used for the strengthening and retrofitting of concrete structures and bridges. Recently, considerable research has been directed to characterize the use of FRP bars and strips as near surface mounted reinforcement, primarily for strengthening applications. Nevertheless, in-depth understanding of the bond mechanism is still a challenging issue. This paper presents both experimental and analytical investigations undertaken to evaluate bond characteristics of near surface mounted carbon FRP (CFRP) strips. A total of nine concrete beams, strengthened with near surface mounted CFRP strips were constructed and tested under monotonic static loading. Different embedment lengths were used to evaluate the development length needed for effective use of near surface mounted CFRP strips. A closed-form analytical solution is proposed to predict the interfacial shear stresses. The model is validated by comparing the predicted values with test results as well as nonlinear finite element modeling. A quantitative criterion governing the debonding failure of near surface mounted CFRP strips is established. The influence of various parameters including internal steel reinforcement ratio, concrete compressive strength, and groove width is discussed.  相似文献   

17.
This study focuses on debonding failure in reinforced concrete beams with carbon fiber reinforced polymer composite bonded on the soffit using the wet lay-up method. An experimental study, which involved 26 tests, was carried out. The experiments showed two failure modes: Intermediate span debond and end debond. The first failure is the result of the high bond stress near the tip of a flexure-shear crack, whereas the second type of failure is due to the high shear stress developed in the weakest concrete layer at the tension reinforcement level. The experiments have shown that U-straps can be effective in preventing intermediate span and end debond. Based on experimental observations, two simple and practical theoretical models were developed and verified with the experimental data, together with a large database of other existing tests.  相似文献   

18.
Three-dimensional nonlinear finite element (FE) models are developed to examine the structural behavior of the Horsetail Creek Bridge strengthened by fiber-reinforced polymers (FRPs). A sensitivity study is performed varying bridge geometry, precracking load, strength of concrete, and stiffness of the soil foundation to establish a FE model that best represents the actual bridge. Truck loadings are applied to the FE bridge model at different locations, as in an actual bridge test. Comparisons between FE model predictions and field data are made in terms of strains in the beams for various truck load locations. It is found that all the parameters examined can potentially influence the bridge response and are needed for selection of the optimal model which predicts the magnitudes and trends in the strains accurately. Then, using the optimal model, performance evaluation of the bridge based on scaled truck and mass-proportional loadings is conducted. Each loading type is gradually increased until failure occurs. Structural responses are compared for strengthened and unstrengthened bridge models to evaluate the FRP retrofit. The models predict a significant improvement in structural performance due to the FRP retrofit.  相似文献   

19.
This paper details the use of carbon fiber reinforced polymer (CFRP) sheets to repair and strengthen prestressed concrete bridge girders in flexure and shear. Three specimens that were removed from an overloaded bridge (Bridge No. 56) in Graham County, Kansas were tested. Two of the specimens were repaired and strengthened, and all three were tested to failure to determine flexural capacity. Test results showed that two layers of longitudinal CFRP sheets increased the flexural capacity of the strengthened specimens by 20% compared to an unstrengthened control specimen. Shear capacity was also evaluated on both ends of each specimen. Two different cases were evaluated in shear. One case allowed shear cracks to propagate inside the transfer length of the prestressing strand, allowing a bond failure to occur. The second case forced the shear cracks to remain outside of the transfer length, thereby preventing a bond failure. The test results show that transverse CFRP sheets increased the shear capacity of the specimens tested by as much as 28%, but did not prevent bond failures.  相似文献   

20.
The lack of a comprehensive, validated, and easily accessible data base for the durability of fiber-reinforced polymer (FRP) composites as related to civil infrastructure applications has been identified as a critical barrier to widespread acceptance of these materials by structural designers and civil engineers. This concern is emphasized since the structures of interest are primarily load bearing and are expected to remain in service over extended periods of time without significant inspection or maintenance. This paper presents a synopsis of a gap analysis study undertaken under the aegis of the Civil Engineering Research Foundation and the Federal Highway Administration to identify and prioritize critical gaps in durability data. The study focuses on the use of FRP in internal reinforcement, external strengthening, seismic retrofit, bridge decks, structural profiles, and panels. Environments of interest are moisture/solution, alkalinity, creep/relaxation, fatigue, fire, thermal effects (including freeze-thaw), and ultraviolet exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号