首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents test results of 18 small-scale reinforced concrete specimens of strengthened beams using carbon-fiber-reinforced polymer (CFRP) composites. The specimens were instrumented with strain gauges in a region where cracks in the concrete were preformed to monitor the variation of strains throughout testing. Results indicate that there can be a very large variation in the measured strains in the composites depending, not only on the location of the cracks, but also on the configuration used to bond the composites to the surface of the elements. The interface shear stresses generated at failure of the beams are compared with two existing analytical models. Additionally, the stress level in the composites was determined for all the strengthened specimens from the experimental data. The calculated stress in the composites reached between 20 and 43% of the CFRP rupture stress. The information presented in this paper provides information that can be used to validate or modify current design procedures of strengthened beams using composites.  相似文献   

2.
This paper presents experimental results of reinforced concrete beams strengthened using near-surface mounted (NSM) carbon fiber-reinforced polymer (CFRP) reinforcement. A total of nine beam specimens were tested under fatigue loads. In addition, two specimens were tested for monotonic capacity. The beams were 3,500 mm long with a cross section of 254 mm deep by 152 mm wide. Different load ranges were considered in the fatigue tests to construct the fatigue life curves. The test results showed that under monotonic loading, the beam strengthened with NSM CFRP rod exhibited increases of 26 and 50% in the yield and ultimate load over the control beam, respectively. Under cyclic loading, the fatigue life for the strengthened beams was 24% higher than that of the control unstrengthened beams. An analytical model using sectional analysis and strain-life approach was developed to estimate the fatigue life of the specimens at various cyclic load ranges. A good agreement between the experimental results and analytical prediction of the fatigue life was obtained.  相似文献   

3.
Carbon fiber-reinforced polymers (CFRPs) have become increasingly important in recent years in bridge rehabilitation. Significant research has been done on the static behavior of CFRP-strengthened reinforced concrete (RC) structures; however, the fatigue behavior of such structures with interface defects subjected to harsh environmental conditions still needs to be investigated. Hence, an experimental program has been carried out to investigate the fatigue behavior, under a load range, which generates service load stress levels, of RC beams strengthened with CFRP fabrics. The effect of aggressive environments was studied by subjecting the test members to freeze–thaw, extreme temperature, ultraviolet light exposure, and relative humidity cycles. All beams survived 2 million fatigue cycles without showing significant bond degradation between composite and substrate. However, significant flexural stiffness degradation was observed in the conditioned specimens. The presence of defects also affected specimen stiffness; however, limited growth in defect size was observed due to fatigue cycling.  相似文献   

4.
Most of the research on application of composite materials in civil engineering during the past decade has concentrated on the behavior of structural elements under static loads. In engineering practice, there are many situations in which structures undergo impact or dynamic loading. In particular, the impact response of concrete beams strengthened with composite materials is of interest. This paper presents the results of an experimental investigation conducted to study the impact effects on concrete beams strengthened with fiber-reinforced polymer laminates. Two types of composite laminates, carbon and Kevlar, were bonded to the top and bottom faces of concrete beams with epoxy. Five beams were tested: two strengthened with Kevlar laminates, two strengthened with carbon laminates, and one unretrofitted beam as the control specimen. The impact load was applied by dropping a steel cylinder from a specified height onto the top face of the beam. The test results revealed that composite laminates significantly increased the capacity of the concrete beams to resist impact load. In addition, the laminates reduced the deflection and crack width. Comparing the test results of the beams strengthened with Kevlar and carbon laminates indicated that the gain in strength depends on the type, thickness, weight, and material properties of the composite laminate.  相似文献   

5.
Although there has been growing interest and field applications of poststrengthening concrete structures using carbon fiber reinforced plastic (CFRP) laminates, very little information exists regarding the flexural fatigue behavior of reinforced concrete beams strengthened with CFRP. This paper presents the results of an investigation into the fatigue behavior of reinforced concrete beams poststrengthened with CFRP laminates. The results of twenty 3 m and six 5 m beams loaded monotonically and cyclically to failure are discussed. Comparisons are made between beams without and with CFRP strengthening. The effect on fatigue life of increasing the amount of CFRP used to strengthen the beams is also examined.  相似文献   

6.
This paper presents the recent progress and achievement in the application of fiber-reinforced polymers (FRP) on strengthening reinforced/prestressed concrete beams subjected to fatigue loading. Although the performance of FRP-strengthened structures under monotonic loading has been intensively investigated, fatigue behavior is relatively less known to date. This paper summarizes most of the currently available literature, including the codes and design manuals, on reinforced/prestressed concrete beams externally strengthened with FRP. The review focuses specifically on the fatigue life as a function of the applied load range, bond behavior of externally bonded FRP, damage accumulation, crack propagation, size effects, residual strength, and failure modes. Research needs including considerations for design guidelines are presented.  相似文献   

7.
Their resistance to electro-chemical corrosion, high strength-to-weight ratio, larger creep strain, fatigue resistance, and nonmagnetic and nonmetallic properties make carbon fiber reinforced polymer (CFRP) composites a viable alternative to bonding of steel plates in repair and rehabilitation of reinforced concrete structures. The objective of this investigation is to study the effectiveness of externally bonded CFRP sheets or carbon fiber fabric in increasing the flexural strength of concrete beams. Four-point bending flexural tests were conducted up to failure on nine concrete beams strengthened with different layouts of CFRP sheets and carbon fiber fabric and on three beams with different layouts of anchored CFRP sheets. An analytical procedure, based on compatibility of deformations and equilibrium of forces, was presented to predict the flexural behavior of beams strengthened with CFRP sheets and carbon fiber fabric. Comparisons were made between the test results and the analytical calculations. The flexural strength was increased up to 58% on concrete beams strengthened with anchored CFRP sheets.  相似文献   

8.
The construction boom over the last century has resulted in a mature infrastructure network in developed countries. Lately, the issue of maintenance and repair/upgrading of existing structures has become a major issue, particularly in the area of bridges. Fiber- reinforced polymer (FRP) has shown great promise as a state-of-the-art material in flexural and shear strengthening as external reinforcement, but information on its applicability in torsional strengthening is limited. The need for torsional strengthening in bridge box girders is highlighted by the Westgate Bridge in Melbourne, Australia, one of the largest strengthening projects in the world for externally bonded carbon FRP (CFRP) laminates. This paper reports the experimental work in an overall investigation of torsional strengthening of solid and box-section reinforced concrete beams with externally bonded carbon FRP. This was found to be a viable method of torsional strengthening. Photogrammetry was a noncontact measuring technique used in the investigation. The deformation mechanisms were found to be unchanged in the strengthened specimens. Furthermore, it was found that the crack widths were reduced and aggregate interlocking action improved with the strengthened beams.  相似文献   

9.
Strengthening concrete girders with fiber-reinforced polymers (FRP) is becoming an increasingly common practice as more research investigations are favorably qualifying the technique. However, important behavioral aspects, such as fatigue in prestressed concrete beams, are yet to be adequately evaluated. An experimental program was conducted to test five pretensioned, prestressed concrete T beams designed for specific prestressing strand stress ranges under live-load conditions. The experimental testing consisted of precracking the beams, strengthening them with carbon FRP, and mechanically loading them to study the effect of increasing the live load on strand fatigue. The beams were either loaded monotonically to ultimate capacity or cyclically fatigued and then loaded monotonically to failure. All the beams were monotonically loaded past their cracking moment at midspan prior to strengthening, to simulate girders in the field. Beam 1 was tested as a control specimen under static loading up to failure. Beams 2 and 3 were strengthened with carbon FRP to have a design stress range of 124 MPa (18 ksi) under service load condition. Beams 4 and 5 were strengthened to have a higher stress range of 248 MPa (36 ksi). For all the strengthened beams, the failure mode observed was FRP rupture. The results favorably qualify the application of FRP strengthening to increase the live load of concrete beams prestressed with straight strands.  相似文献   

10.
This paper presents the results of an experimental study designed to investigate the viability of using externally bonded carbon-fiber-reinforced polymer (CFRP) laminates to extend the service life of corroded reinforced concrete (RC) beams. A total of 14 beams, 152×254×3,200?mm each, were tested. Three beams were not corroded; two of them were strengthened by CFRP laminates, while one specimen was kept as a virgin. The remaining 11 beams were subjected to different levels of corrosion damage up to a 31% steel mass loss using an impressed current technique. Six of the corroded beams were repaired with CFRP laminates, whereas the remaining five beams were not repaired. Eventually, all specimens were tested to failure under four-point bending. Corrosion of the steel reinforcement significantly reduced the load-carrying capacity of RC beams. At all levels of corrosion damage, CFRP repair increased the ultimate strengths of the corroded beams to levels higher than the strength of the virgin beam but significantly reduced the deflection capacity.  相似文献   

11.
The cracking characteristics of fiber-reinforced polymer (FRP) strengthened reinforced concrete (RC) beams in both the short- and long-term is addressed in this paper. First, an empirical equation based on regression analysis of test results obtained from 36 beams was derived for the evaluation of crack widths in FRP-strengthened RC beams under short-term loading. The equation accounts for the effective concrete area in tension, steel stress, proximity of tensile longitudinal reinforcement, and primary crack height. Next, the long-term crack widths of glass FRP-strengthened RC beams under sustained loads were studied. Beams strengthened with glass FRP laminates showed improved cracking characteristics with smaller crack widths compared to conventional RC beams. Based on the investigation, two empirical equations are presented to compute the long-term crack widths in FRP-strengthened beams.  相似文献   

12.
This paper presents the results of an experimental and analytical study of the fatigue performance of corroded reinforced concrete (RC) beams repaired with fiber-reinforced polymer (FRP) sheets. Ten RC beam specimens (152×254×3,200?mm) were constructed. One specimen was neither strengthened nor corroded to serve as a reference; three specimens were corroded and not repaired; another three specimens were corroded and repaired with U-shaped glass FRP sheets that wrapped the cross section of the specimen; and the remaining three specimens were corroded and repaired with U-shaped glass FRP sheets for wrapping and carbon-fiber-reinforced polymer (CFRP) sheets for flexural strengthening. The FRP sheets were applied after the main reinforcing bars were corroded to an average mass loss of 5.5%. Following FRP repair, some specimens were tested immediately to failure, while the other repaired specimens were subjected to further corrosion before being tested to failure to investigate their postrepair (long-term) performance. Reinforcement steel pitting due to corrosion reduced the fatigue life significantly. The FRP wrapping had no significant effect on the fatigue performance, while using CFRP sheets for flexural strengthening enhanced the fatigue performance significantly. The fatigue results were compared to smooth specimen fatigue data to estimate an equivalent fatigue notch factor for the main reinforcing bars of the tested specimens.  相似文献   

13.
To date, research on concrete-filled fiber-reinforced polymer (FRP) tubes (CFFT) has focused on the effect of static loads, simulated seismic loads, and long-term sustained loads. Dynamic fatigue behavior of CFFTs, on the other hand, has received little or no attention. This paper reports on an experimental study to evaluate damage accumulation, stiffness degradation, fatigue life, and residual bending strength of CFFT beams. A total of eight CFFT beams with four different types of FRP tube were tested under four point bending. Test parameters included reinforcement index, fiber architecture, load range, and end restraints. Fatigue performance of CFFT beams is clearly governed by characteristics of the FRP tube and its three phases of damage growth: matrix cracking, matrix delamination, and fiber rupture. Lower reinforcement index increases stiffness degradation and damage growth, and shortens fatigue life. End restraints, e.g., embedment of FRP tube in adjacent members, promote composite action, arrest slippage of concrete core, and enhance fatigue life of CFFT beams. It is suggested that a maximum load level of 25% of the static capacity be imposed for fatigue design of CFFTs. With proper design, CFFTs may withstand repeated traffic loading necessary for bridge girders.  相似文献   

14.
Many prestressed concrete bridges are in need of upgrades to increase their posted capacities. The use of carbon fiber-reinforced polymer (CFRP) materials is gaining credibility as a strengthening option for reinforced concrete, yet few studies have been undertaken to determine their effectiveness for strengthening prestressed concrete. The effect of the CFRP strengthening on the induced fatigue stress ratio in the prestressing strand during service loading conditions is not well defined. This paper explores the fatigue behavior of prestressed concrete bridge girders strengthened with CFRP through examining the behavior of seven decommissioned 9.14?m (30?ft) girders strengthened with various CFRP systems including near-surface-mounted bars and strips, and externally bonded strips and sheets. Various levels of strengthening, prestressing configurations, and fatigue loading range are examined. The experimental results are used to provide recommendations on the effectiveness of each strengthening configuration. Test results show that CFRP strengthening can reduce crack widths, crack spacing, and the induced stress ratio in the prestressing strands under service loading conditions. It is recommended to keep the prestressing strand stress ratio under the increased service loading below the value of 5% for straight prestressing strands, and 3% for harped prestressing strands. A design example is presented to illustrate the proposed design guidelines in determining the level of CFRP strengthening. The design considers the behavior of the strengthened girder at various service and ultimate limit states.  相似文献   

15.
This paper deals with reinforced concrete beams strengthened by means of externally bonded fiber-reinforced polymer (FRP) sheets. The scope of the work is to discuss and compare an exact and an approximate approach to the computation of the flexural load-carrying capacity of the strengthened beam. The two approaches differ from one another in the way they take into account the extent of the load already acting throughout strengthening operations. To achieve this goal a numerical model is presented and validated by comparing its output with that of 46 experimental tests taken from the literature. The numerical model is then adopted to perform a numerical parametric analysis of a wide range of practical applications, excluding all cases of FRP delamination, and useful conclusions are drawn.  相似文献   

16.
After a brief review of the ductility and deformability indices currently used in the design of concrete beams reinforced or prestressed with steel or fiber reinforced polymer (FRP) tendons, a new definition of a deformability index (factor) for prestressed concrete beams is proposed. The new factor is defined in terms of both a deflection factor and a strength factor. The deflection factor is the ratio of the deflection at failure to the deflection at first cracking, while the strength factor is the ratio of the ultimate moment (or load) to the cracking moment (or load). The proposed deformability factor is verified not only by test results obtained by the writer, but also by other test results available in the literature and it appears to be a suitable measurement of the deformability of concrete beams prestressed with either FRP tendons or steel tendons.  相似文献   

17.
In recent years, a tremendous effort has been directed toward understanding and promoting the use of externally bonded fiber-reinforced polymer (FRP) composites to strengthen concrete structures. Despite this research effort, studies on the behavior of beams strengthened with FRP under fatigue loading are relatively few, especially with regard to its shear-strengthening aspect. This study aims to examine the fatigue performance of RC beams strengthened in shear using carbon FRP (CFRP) sheets. It involves six laboratory tests performed on full-size T-beams, where the following parameters are investigated: (1) the FRP ratio and (2) the internal transverse-steel reinforcement ratio. The major finding of this study is that specimens strengthened with one layer of CFRP survived 5 million cycles, some of them with no apparent signs of damage, demonstrating thereby the effectiveness of FRP strengthening systems on extending the fatigue life of structures. Specimens strengthened with two layers of CFRP failed in fatigue well below 5 million cycles. The failure mode observed for these specimens was a combination of crushing of the concrete struts, local debonding of CFRP, and yielding of steel stirrups. This failure may be attributed to the higher load amplitude and also to the greater stiffness of the FRP which may have changed the stress distribution among the different components coming into play. Finally, comparison between the performance of specimens with transverse steel and without seems to indicate that the addition of transverse steel extends the fatigue life of RC beams.  相似文献   

18.
This paper presents a novel anchoring technique for strengthening reinforced concrete beams with prestressed carbon fiber- reinforced polymer (CFRP) sheets. Permanent steel anchors are commonly used for the application of prestressed CFRP sheets. The steel anchors are, however, susceptible to corrosion and may not blend into the aesthetics of the original structure. As a result, it may be preferable to remove the steel anchors after transferring the required prestress to the structure with minimal losses of sustained prestress. A technique for replacing the steel anchors with nonmetallic anchors is investigated and reported herein. Nine doubly reinforced concrete beams are tested with various types of nonmetallic anchor systems such as nonanchored U-wraps, mechanically anchored U-wraps, and CFRP sheet-anchored U-wraps. The developed nonmetallic anchorages successfully transfer the sustained prestress in the CFRP sheets with insignificant prestress losses. A closed-form solution for the transfer of prestress is developed and compared to the experimental results.  相似文献   

19.
Shear failure is catastrophic and occurs usually without advance warning; thus it is desirable that the beam fails in flexure rather than in shear. Many existing reinforced concrete (RC) members are found to be deficient in shear strength and need to be repaired. Externally bonded reinforcement such as carbon-fiber-reinforced polymer (CFRP) provides an excellent solution in these situations. To investigate the shear behavior of RC beams with externally bonded CFRP shear reinforcement, 11 RC beams without steel shear reinforcement were cast at the concrete laboratory of the New Jersey Institute of Technology. After the beams were kept in the curing room for 28?days, carbon-fiber strips and fabrics made by Sika Corp. were applied on both sides of the beams at various orientations with respect to the axis of the beam. All beams were tested on a 979?kN (220?kips) MTS testing machine. Results of the test demonstrate the feasibility of using an externally applied, epoxy-bonded CFRP system to restore or increase the shear capacity of RC beams. The CFRP system can significantly increase the serviceability, ductility, and ultimate shear strength of a concrete beam; thus, restoring beam shear strength by using CFRP is a highly effective technique. An analysis and design method for shear strengthening of externally bonded CFRP has been proposed.  相似文献   

20.
Fiber-reinforced polymers (FRP) are becoming more widely used for repair and strengthening of conventionally reinforced concrete (RC) bridge members. Once repaired, the member may be exposed to millions of load cycles during its service life. The anticipated life of FRP repairs for shear strengthening of bridge members under repeated service loads is uncertain. Field and laboratory tests of FRP-repaired RC deck girders were performed to evaluate high-cycle fatigue behavior. An in-service 1950s vintage RC deck-girder bridge repaired with externally bonded carbon fiber laminates for shear strengthening was inspected and instrumented, and FRP strain data were collected under ambient traffic conditions. In addition, three full-size girder specimens repaired with bonded carbon fiber laminate for shear strengthening were tested in the laboratory under repeated loads and compared with two unfatigued specimens. Results indicated relatively small in situ FRP strains, laboratory fatigue loading produced localized debonding along the FRP termination locations at the stem-deck interface, and the fatigue loading did not significantly alter the ultimate shear capacity of the specimens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号