首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper considers the non-axisymmetric three-dimensional problem of a penny-shaped crack with permeable electric conditions imposed on the crack surfaces, subjected to a pair of point normal forces applied symmetrically with respect to the crack plane. The crack is embedded in an infinite transversely isotropic piezoelectric body with the crack face perpendicular to the axis of material symmetry. Applying the symmetry of the problem under consideration then leads to a mixed–mixed boundary value problem of a half-space, for which potential theory method is employed for the purpose of analysis. The cases of equal eigenvalues are also discussed. Although the treatment differs from that for an impermeable crack reported in literature, the resulting governing equation still has a familiar structure. For the case of a point force, exact expressions for the full-space electro-elastic field are derived in terms of elementary functions with explicit stress and electric displacement intensity factors presented. The exact solution for a uniform loading is also given.  相似文献   

2.
The half-plane crack and contact problems for transversely isotropic piezoelectric materials are exactly analyzed. The potential theory method is employed with the resulting integro-differential (for crack problem) and integral (for contact problem) equations having identical structures with those reported earlier in the literature. Existing results in potential theory are thus utilized to obtain complete solutions of the problems under consideration. In particular, for the half-plane crack, both the permeable and impermeable electric conditions at the crack surfaces are considered. The solutions for the permeable crack and half-plane contact are entirely new to the literature.  相似文献   

3.
The fracture mechanics of piezoelectric solids is studied. A new electric boundary condition is proposed, in which the electric permeability of air in a crack gap is considered. An exact solution to this problem is given and some numerical results are obtained. It is found that the electric permeability of air in a crack gap leads to a value of KVI less than that of an impermeable crack.  相似文献   

4.
Summary The analysis of intensity factors for a penny-shaped crack under thermal, mechanical, electrical and magnetic boundary conditions becomes a very important topic in fracture mechanics. An exact solution is derived for the problem of a penny-shaped crack in a magneto-electro-thermo-elastic material in a temperature field. The problem is analyzed within the framework of the theory of linear magneto-electro-thermo-elasticity. The coupling features of transversely isotropic magneto-electro-thermo-elastic solids are governed by a system of partial differential equations with respect to the elastic displacements, the electric potential, the magnetic potential and the temperature field. The heat conduction equation and equilibrium equations for an infinite magneto-electro-thermo-elastic media are solved by means of the Hankel integral transform. The mathematical formulations for the crack conditions are derived as a set of dual integral equations, which, in turn, are reduced to Abel's integral equation. Solution of Abel's integral equation is applied to derive the elastic, electric and magnetic fields as well as field intensity factors. The intensity factors of thermal stress, electric displacement and magnetic induction are derived explicitly for approximate (impermeable or permeable) and exact (a notch of finite thickness crack) conditions. Due to its explicitness, the solution is remarkable and should be of great interest in the magneto-electro-thermo-elastic material analysis and design.  相似文献   

5.
Q. -H. Qin  Y. -W. Mai 《Acta Mechanica》1999,138(1-2):97-111
Summary A new solution is obtained for thermoelectroelastic analysis of an insulated hole of various shapes embedded in an infinite piezoelectric plate. Based on the exact electric boundary conditions on the hole boundnary, Lekhnitskii's formulation and conformal mapping, the solution for elastic and electric fields has been obtained in closed form in terms of complex potential. The solution has a simple unified form for various holes such as ellipse, circle, triangle and square openings. As an application of the solution, the hoop stress and electric displacement (SED) and the solution for crack problems are discussed. Using the above results, the SED intensity factor and strain energy release rate can be obtained analytically. One numerical example is considered to illustrate the application of the proposed formulation and compared with those obtained from impermeable model.  相似文献   

6.
The solution of an impermeable penny-shaped crack subjected to a concentrated thermal load (prescribed point temperature) applied arbitrarily at the crack surfaces is derived using the generalized potential theory method. The integral equation governing the temperature field is found to have the same structure as that for the elastic punch problem and the integro-differential equations related to the electroelastic field are similar to that reported for the elastic crack problem. Significant solutions to these integro-differential equations are obtained by generalizing the previous results available in literature. Exact three-dimensional expressions for the full-space thermo-electro-elastic field are finally obtained by simple differentiation, all in terms of elementary functions. The exact analysis for a permeable crack is also presented and discussed. The obtained point temperature solutions play an important role in the related BEM analysis.  相似文献   

7.
Abstract

In this paper, the transient analysis of semi‐infinite propagating cracks in piezoelectric materials subjected to dynamic anti‐plane concentrated body force is investigated. The crack surface is assumed to be covered with an infinitesimally thin, perfectly conducting electrode that is grounded. In analyzing this problem, it has characteristic lengths and a direct attempt towards solving this problem by transform and Wiener‐Hopf techniques (Noble, 1958) is not applicable. In order to solve this problem, a new fundamental solution for propagating cracks in piezoelectric materials is first established and the transient response of the propagating crack is obtained by superposition of the fundamental solution in the Laplace transform domain. The fundamental solution to be used is the responses of applying exponentially distributed traction in the Laplace transform domain on the propagating crack surface. Taking into account the quasi‐static approximation, exact analytical transient solutions for the dynamic stress intensity factor and the dynamic electric displacement intensity factor are obtained by using the Cagniard‐de Hoop method (Cagnard, 1939; de Hoop, 1960) of Laplace inversion and are expressed in explicit forms. Numerical calculations of dynamic intensity factors are evaluated and the results are discussed in detail. The transient solutions for stationary cracks have been shown to approach the corresponding static values after the shear wave of the piezoelectric material has passed the crack tip.  相似文献   

8.
Using the fundamental solutions and the Somigliana identity of piezoelectric medium, the boundary integral equations are obtained for a conductive planar crack of arbitrary shape in three-dimensional transversely isotropic piezoelectric medium. The singular behaviors near the crack edge are studied by boundary integral equation approach, and the intensity factors are derived in terms of the displacement discontinuity and the electric displacement boundary value sum near the crack edge on crack faces. The boundary integral equations for two dimensional crack problems are deduced as a special case of infinite strip planar crack. Based on the analogy of the obtained boundary integral equations and those for cracks in conventional isotropic elastic material and for contact problem of half-space under the action of a rigid punch, an analysis method is proposed. As an example, the solution to conductive Griffith crack is derived.  相似文献   

9.
X. D. Wang  L. Y. Jiang 《Acta Mechanica》2004,172(3-4):195-210
Summary. This paper presents a comprehensive study on the plane problem of an arbitrarily oriented crack in a piezoelectric medium. Using a dielectric crack model, the electric boundary condition along the crack surfaces is assumed to be governed by the opening displacement of the crack. The formulation of this nonlinear problem is based on the use of Fourier transform and solving the resulting nonlinear singular integral equations. Multiple deformation modes are observed according to different geometric and loading conditions. The effects of the crack orientation and the applied loads upon the fracture behavior of cracked piezoelectric materials are studied. The relation between the current crack model and the commonly used permeable and impermeable models is discussed.  相似文献   

10.
In this study, a conservative integral is derived for calculating the intensity factors associated with piezoelectric material for an impermeable crack. This is an extension of the M-integral or interaction energy integral for mode separation in mechanical problems. In addition, the method of displacement extrapolation is extended for this application as a check on results obtained with the conservative integral. Poling is assumed parallel, perpendicular and at an arbitrary angle with respect to the crack plane, as well as parallel to the crack front. In the latter case, a three-dimensional treatment is required for the conservative integral which is beyond the scope of this investigation. The asymptotic fields are obtained; these include stress, electric, displacement and electric flux density fields which are used as auxiliary solutions for the M-integral.Several benchmark problems are examined to demonstrate the accuracy of the methods. Numerical difficulties encountered resulting from multiplication of large and small numbers were solved by normalizing the variables. Since an analytical solution exists, a finite length crack in an infinite body is also considered. Finally, a four point bend specimen subjected to both an applied load and an electric field is presented for a crack parallel, perpendicular and at an angle to the poling direction. It is seen that neglecting the piezoelectric effect in calculating stress intensity factors may lead to errors.  相似文献   

11.
Summary This paper presents a study on the effective electroelastic property of piezoelectric media with parallel or randomly distributed cracks. The theoretical formulation is derived using the dilute model of distributed cracks and the solution of a single dielectric crack problem, in which the electric boundary condition along the crack surfaces is governed by the crack opening displacement. It is observed that the effective electroelastic property of such cracked piezoelectric media is nonlinear and sensitive to loading conditions. Numerical simulations are conducted to show the effects of crack distribution and electric boundary condition upon the effective electroelastic property. The transition between the commonly used electrically permeable and impermeable crack models is studied.  相似文献   

12.
In this paper, the dynamic behavior of a Griffith crack in a piezoelectric material plane under anti-plane shear waves is investigated by using the non-local theory for impermeable crack face conditions. For overcoming the mathematical difficulties, a one-dimensional non-local kernel is used instead of a two-dimensional one for the anti-plane dynamic problem to obtain the stress and the electric displacement near the crack tips. By using the Fourier transform, the problem can be solved with the help of two pairs of dual integral equations. These equations are solved using the Schmidt method. Contrary to the classical elasticity solution, it is found that no stress and electric displacement singularity is present near the crack tip. The non-local dynamic elastic solutions yield a finite hoop stress near the crack tip, thus allowing for a fracture criterion based on the maximum dynamic stress hypothesis. The finite hoop stress at the crack tip depends on the crack length, the circular frequency of incident wave and the lattice parameter. For comparison results between the non-local theory and the local theory for this problem, the same problem in the piezoelectric materials is also solved by using local theory.  相似文献   

13.
Interface and interfacial cracks interacting with screw dislocations in piezoelectric bimaterials subjected to antiplane mechanical and in-plane electrical loadings are studied within the framework of linear piezoelectricity theory. Straight dislocations with the Burgers vector normal to the isotropic basal plane near the interface or interfacial crack are considered. The dislocations are characterized by a discontinuous electric potential across the slip plane and are subjected to a line-force and a line-charge at the core. An explicit solution for the screw dislocation in piezoelectric bimaterial with straight interface is found based on the solution of a similar problem for infinite homogenous medium. The obtained relation is independent of the nature of singularity. This fundamental result is used to analyze dislocation interacting with a set of collinear interfacial cracks in piezoelectric bimaterials. Three solutions for the screw dislocation interacting with a semi-infinite crack, finite crack, and edge crack between two bonded dissimilar piezoelectric materials are obtained in closed-form. These solutions can be used as Green’s functions for the analyses of interfacial cracks in piezoelectric bimaterials.  相似文献   

14.
The electro-elastic problem of a transversely isotropic piezoelectric material with a flat crack occupying the outside of a circle perpendicular to the poling axis is considered in this paper. By using the Hankel transform technique, a mixed boundary value problem associated with the considered problem is solved analytically. The results are presented in closed form both for impermeable crack and for permeable crack. A full field solution is given, i.e., explicit expressions for electro-elastic field at any point in the entire piezoelectric space, as well as field intensity factors near the crack front, are determined. A numerical example for a cracked PZT-5H ceramic is given, and the effects of applied electric fields on elastic and electric behaviors are presented graphically.  相似文献   

15.
A plane electroelastic problem involving planar cracks in a piezoelectric body is considered. The deformation of the body is assumed to be independent of time and one of the Cartesian coordinates. The cracks are traction free and are electrically either permeable or impermeable. Numerical Green's functions which satisfy the boundary conditions on the cracks are derived using the hypersingular integral approach and applied to obtain a boundary integral solution for the electroelastic crack problem considered here. As the conditions on the cracks are built into the Green's functions, the boundary integral solution does not contain integrals over the cracks. It is used to derive a boundary element procedure for computing the crack tip stress and electrical displacement intensity factors.  相似文献   

16.
《Engineering Fracture Mechanics》2004,71(7-8):1149-1163
The plane solution giving the stresses and electric fields in an infinite body around a cylindrical cavity with an elliptical cross-section is presented. The energy change in an infinite body due to the introduction of an elliptical cavity having an electric field within it is calculated. The electric field from the interior of the cavity is then used in conjunction with the energy change formula to calculate the total energy release rate per crack tip when a Griffith crack propagates. Due to a change of stored electrostatic energy within the crack, the total energy release rate is not equal to the energy release rate at the crack tips as the material separates. The implications for fracture and crack growth are discussed.  相似文献   

17.
The interaction between incident surface water waves and floating elastic plate is studied. This paper considers the diffraction of plane incident waves on a floating flexible ring-shaped plate and its response to the incident waves. An analytic and numerical study of the hydroelastic behavior of the plate is presented. An integro-differential equation is derived for the problem and an algorithm of its numerical solution is proposed. The representation of the solution as a series of Hankel functions is the key ingredient of the approach. The problem is first formulated. The main integro-differential equation is derived on the basis of the Laplace equation and thin-plate theory. The free-surface elevation, plate deflection and Green’s function are expressed in polar coordinates as superpositions of Hankel and Bessel functions, respectively. These expressions are used in a further analysis of the integro-differential equation. The problem is solved for two cases of water depth infinite and finite. For the coefficients in the case of infinite depth a set of algebraic equations is obtained, yielding an approximate solution. Then a solution is obtained for the general and most interesting case of finite water depth analogously in the seventh section. The exact solution might be approximated by taking into account a finite number of the roots of the plate dispersion relation. Also, the influence of the plate’s motion on wave propagation in the open water field and within the gap of the ring is studied. Numerical results are presented for illustrative purposes.  相似文献   

18.
Existing studies indicate that the commonly used electrically impermeable and permeable crack models may be inadequate in evaluating the fracture behaviour of piezoelectric materials in some cases. In this paper, a dielectric crack model based on the real electric boundary condition is used to study the electromechanical behaviour of interacting cracks arbitrarily oriented in an infinite piezoelectric medium. The electric boundary condition along the crack surfaces is governed by the opening displacement of the cracks. The formulation of this nonlinear problem is based on modelling the cracks using distributed dislocations and solving the resulting nonlinear singular integral equations using Chebyshev polynomials. Numerical simulation is conducted to show the effect of crack orientation, crack interaction and electric boundary condition upon the fracture behaviour of cracked piezoelectric media.  相似文献   

19.
Summary The plane strain problem for an interface crack between two bonded piezoelectric semi-infinite planes under remote electromechanical loading is considered. Mechanically frictionless and electrically permeable contact zones are assumed at the crack tips and the remaining part of the crack is considered as electrically limited permeable with a certain permeability of the crack medium. Patron’s way of modelling limited permeable conditions is used. By means of integral transforms the problem is reduced to a nonlinear system of singular integral equations. An iterative scheme together with discretization and utilization of Gauss-Chebishev quadrature rule is applied for the solution of this system. Distributions of the electric displacement along the crack region as well as the stress and electric intensity factors and the energy release rate are found for different electromechanical loads and crack permeabilities. Calculations are performed for an artificial contact zone length, however the way of an easier determination of the associated values for the real contact zone length is shown. As a particular case of the obtained solution the crack in a homogeneous piezoelectric media is considered. The results of the calculations are compared to the corresponding results obtained earlier by means of Hao and Shen’s way of modelling the crack permeability. Even though the electric displacements obtained in the respective framework of these models differ essentially, it appears that the fracture mechanical parameters are in good agreement with each other.  相似文献   

20.
The boundary integro-differential equation method is illustrated by two numerical examples concerning the study of the dynamic stress intensity factor around a penny-shaped crack in an infinite elastic body. Harmonic and impact load on the crack surface has been considered. Applying the Laplace transform with respect to time to the governing equations of motion the problem is solved in the transformed domain by the boundary integro-differential equations. The Laplace transformed general transient problem can be used to solve the steady-state problem as a special case where no numerical inversion is involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号