首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new process is proposed which converts CO2 and CH4 containing gas streams to synthesis gas, a mixture of CO and H2 via the catalytic reaction scheme of steam-carbon dioxide reforming of methane or the respective one of only carbon dioxide reforming of methane, in permeable (membrane) reactors. The membrane reformer (permreactor) can be made by reactive or inert materials such as metal alloys, microporous ceramics, glasses and composites which all are hydrogen permselective. The rejected CO reacts with steam and converted catalytically to CO2 and H2 via the water gas shift in a consecutive permreactor made by similar to the reformer materials and alternatively by high glass transition temperature polymers. Both permreactors can recover H2 in permeate by using metal membranes, and H2 rich mixtures by using ceramic, glass and composite type permselective membranes. H2 and CO2 can be recovered simultaneously in water gas shift step after steam condensation by using organic polymer membranes. Product yields are increased through permreactor equilibrium shift and reaction separation process integration.

CO and H2 can be combined in first step to be used for chemical synthesis or as fuel in power generation cycles. Mixtures of CO2 and H2 in second step can be used for synthesis as well (e.g., alternative methanol synthesis) and as direct feed in molten carbonate fuel cells. Pure H2 from the above processes can be used also for synthesis or as fuel in power systems and fuel cells. The overall process can be considered environmentally benign because it offers an in-situ abatement of the greenhouse CO2 and CH4 gases and related hydrocarbon-CO2 feedstocks (e.g., coal, landfill, natural, flue gases), through chemical reactions, to the upgraded calorific value synthesis gas and H2, H2 mixture products.  相似文献   

2.
A recent study by Eggeman and Chaffin (2005 Eggeman , T. , and Chafin , S. ( 2005 ). Beware of pitfalls of CO2 freezing predictions , Chem. Eng. Prog. , 101 ( 3 ), 3944 . [Google Scholar]), which showed large discrepancies in CO2 freeze-out conditions as predicted by several commercial simulators, prompted a reexamination of using the TBS equation of state for phase equilibrium calculations involving solids. Salim and Trebble (1994 Salim , P. , and Trebble , M. A. ( 1994 ). Modelling of solid phases in thermodynamic calculations via translation of a cubic equation of state at the triple point , Fluid Phase Equilib. , 93 , 7599 .[Crossref] [Google Scholar]) had previously presented a methodology for extending the Trebble-Bishnoi-Salim (TBS) equation of state (Salim, 1990 Salim , P. ( 1990 ). A modified Trebble-Bishnoi equation of state, M.Sc. thesis , University of Calgary . [Google Scholar]) to calculations involving a solid phase. In this study, the CO2 freeze-out conditions in CO2/CH4 and CO2/C2H6 mixtures are calculated from the TBS equation of state, and it is shown that they provide a better data fit than the traditional Poynting correction method. Furthermore, since the use of an equation of state in SLE/SVE calculations does not require the explicit assumption of a pure solid phase, the model was assessed for its ability to correlate CO2 gas hydrate equilibrium conditions. Gas hydrates were simply treated as an impure solid phase, and it was seen that the predictions of gas hydrate equilibrium were in very good agreement with the experimental data. Computationally, the use of the TBS equation of state has the advantage, over the model of Yokozeki (2005 Yokozeki , A. ( 2005 ). Methane gas hydrates viewed through unified solid-liquid-vapour equation of state , Int. J. Thermophys. , 26 ( 3 ), 743765 . [Google Scholar]), that it does not require a modifying factor (cb) in the repulsive term to handle the presence of hydrates; they are instead handled using a unique binary interaction parameter for the hydrate phase.  相似文献   

3.
Mixed solvents are a combination of chemical and physical solvents and have some advantages over traditional treating solvents for the removal of acid gases from gas streams. The solubility of H2S and CO2in a mixed solvent consisting of AMP (2-amino-2-methyl-l-propanol), sulfolane, and water has been measured at 40 and 100°C at partial pressures of the acid gas to 6000 kPa. The solubility in the mixed solvent was compared with the solubility in an aqueous solution of equivalent amine concentration. At solution loadings less than 1 mol acid gas/mol amine, the solubility of the acid gas is lower in the mixed solvent than in the corresponding amine solvent. At higher loadings, the trend is reversed and the solubility is greater in the mixed solvent. The results are rationalized in terms of the effect of the physical solvent component on the chemical reaction and physical vapor-liquid equilibria. The solubility model of Deshmukh and Mather was used to correlate the data.  相似文献   

4.
The catalytic reforming of methane by steam is an important industrial process that produces H2, CO and CO2, thus chemically transforming natural gas, coal gas and light hydrocarbon feedstocks to synthesis gas or hydrogen fuel. Methane-steam reforming may consist of a number of reactions depending on the reforming catalyst, operating conditions and feedstock composition, The typical industrially desirable reactions are the reverse of methanation (CH4 + H2O = CO + 3H2) and the water-gas shift (CO + H2O = CO2 + H2). Both reactions are equilibrium limited and the composition of the mixture that exits the reformer is in accordance with the one calculated thermodynarmically. Removal of reaction products at the reactor exit by means of selective membrane permeation can offer improved CH4 conversions and CO2 and H2 yields, assuming the subsequent utilization of the reject streams by a second methane-steam reformer. We numerically investigated the feasibility of a system of two tubular methane-steam reformers, in series with an intermediate permselective polyimide membrane permeator, as means of improving the overall CH4 conversion and the H2, CO2 yields over conventional methane-steam reforming equilibrium reaction-separation schemes that are currently in industrial practice. The unique feature of the permselective polyimide separator is the simultaneous removal of H2 and CO2 versus CH4 and CO from the reformed streams. The utilized 6FDA-3,3', 5,5'-TMB aromatic polyimide was reportedly characterized [10] and found to exhibit superior permselective properties compared with other polyimides of the same or different dianhydride sequence. Conversion and yield of the designed reactor-membrane permeator reforming system can be maximized by optimizing the permselective properties of the membrane material and the design variables of the reactors and the permeator. Product recovery and purity in the permeate stream need to be compromised to overall enhance methane conversion and product yield. The operating variables that were varied to investigate their effect on the magnitude of conversion and yield included the inlet pressure of the first reformer, the temperature of both reformers, and the permeator dimensionless Pe' number (variation of the first two variables results to a drastic change in the composition of the reformed stream that enters into the permeator). The numerical results show that the new reformer-membrane permeator cascade process can be more effective (it can offer increased CH4 conversions and H2, CO2 yields) than conventional equilibrium methane-steam reforming reaction-separation processes currently in practice.  相似文献   

5.
The decomposition behavior and mechanism of calcium sulfate in O2/CO2 pulverized coal combustion were studied in an entrained flow reactor. A reaction rate expression correlating the influence of various factors was proposed for CaS04 decomposition and it is able to predict CaS04 decomposition satisfactorily. Under the conditions investigated, the decomposition of CaS04 was found to be a regime of chemically controlled shrinking core reaction. A CO2-rich atmosphere enhances CaSO4 decomposition in absence of oxygen. CaSO4 particles have catalytic effect on formation of CO from CO2. A high SO2 concentration inhibits CaSO4 decomposition. The kinetics of CaSO4decomposition has obvious dependence on experimental facilities and conditions, whereas the activation energy has much lower dependence. The kinetics derived in this work is more appropriate for investigating desulfurization in O2/CO2 pulverized coal combustion because an entrained flow reactor has a much closer condition to that in O2/CO2 pulverized coal combustion than a TGA.  相似文献   

6.
Complexes (H(2)O/CO(2), e-(H(2)O/CO(2)) and h(+)-(H(2)O/CO(2))) in the reaction system of CO(2) photoreduction with H(2)O were researched by B3LYP and MP2 methods along with natural bond orbital (NBO) analysis. Geometries of these complexes were optimized and frequencies analysis performed. H(2)O/CO(2) captured photo-induced electron and hole produced e-(H(2)O/CO(2)) and h(+)-(H(2)O/CO(2)), respectively. The results revealed that CO(2) and H(2)O molecules could be activated by the photo-induced electrons and holes, and each of these complexes possessed two isomers. Due to the effect of photo-induced electrons, the bond length of C=O and H-O were lengthened, while H-O bonds were shortened, influenced by holes. The infrared (IR) adsorption frequencies of these complexes were different from that of CO(2) and H(2)O, which might be attributed to the synergistic effect and which could not be captured experimentally.  相似文献   

7.
Polyamide-b-ethylene (Pebax) is a promising material for membrane-based gas separation application with excellent CO2 capturing potential. Pebax is a rubbery elastomer which offers good mechanical support with its hard crystalline phase and excellent gas transport through its amorphous polyether phase. This review article includes recent advances in Pebax based membrane synthesis, solvent selection for membrane synthesis, compatible fillers with Pebax matrix and the improved gas separation performance of the prepared membranes. The literature review shows that Pebax based membranes are a good candidate for separation of CO2 from flue gases and can be used for commercial applications.  相似文献   

8.
We have studied the rate of methanol formation over Cu(100) and Ni/Cu(100) from various mixtures of CO, CO2 and H2. It is found that the presence of submonolayer quantities of Ni leads to a strong increase in the rate of methanol formation from mixtures containing all three components whereas Ni does not influence the rate from mixtures of CO2/H2 and CO/H2, respectively. The influence of the partial pressures of CO and CO2 on the rate indicates that the role of CO is strictly promoting. From temperature-programmed desorption spectra it follows that the surface concentration of Ni depends strongly on the partial pressure of CO. In this way the increase in reactivity is interpreted as a CO-induced structural promotion introduced by the stronger bonding of CO to Ni as compared to Cu. It is suggested that this type of promotional behavior will be of general importance in existent catalysts and perhaps even more relevant in the development of new or improved bimetallic catalysts. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
The CO2 reforming of methane over reduced NiO/MgO solid solution catalysts was studied at 800°C by a novel transient method, which couples a broadened pulse of CH4/CO2 with a step change to the carrier gas and/or with a sharp isotopic pulse of either 18O4, CO18 2 or 13CO16 2. The response curves indicated that two kinds of oxygen were formed over the catalysts during reaction: adsorbed oxygen which reacts fast with C species and lattice oxygen which reacts more slowly with C species. One concludes that a redox cycle of lattice oxygen formation through the oxidation of Ni and its reaction with C species takes place on the catalyst surface. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
FTIR spectra of a Ru-RuOx/TiO2 catalyst obtained on co-adsorption of CO, CO2 and H2 in the temperature range of 300–500 K were found to be the sum total of corresponding spectra observed during methanation of individual oxides. The two oxides compete for metal sites and at each temperature they reacted simultaneously to form distinct transient Ru(CO)n type species even though the nature, the stability and the reactivity of these species were different in the two cases. The monocarbonyl species formed during adsorption/reaction of CO alone or of CO + H2 were bonded more strongly than those formed during CO2 + H2 reaction.  相似文献   

11.
ABSTRACT

An experimental air dryer was used to investigate the effects of air temperature, sphere diameter and puffing with CO2 on the drying of potato spheres. Accordingly, the experimental results showed only falling-rate behaviour and hence drying completely controlled by internal mass transfer was interpreted on the basis of Fick's diffusional model for non-steady state diffusion. Drying rate increased with increasing air temperature, and also increased with decreasing diameter of sphere. By considering the diffusion coefficients at different diameters, it was established that the drying occurred by a diffusion mechanism as opposed to a capillary mechanism. It was also found that CO2 puffing had a positive effect on the drying rate.  相似文献   

12.
The interaction of CO2 with K-promoted Mo2C/Mo(100) has been studied with high-resolution electron energy loss spectroscopy, work function measurements and temperature-programmed desorption. Pre-adsorbed potassium dramatically affects the adsorption behavior of CO2 on the Mo2C/Mo(100) surface. It increases the rate of adsorption, the binding energy of CO2 and it induces the dissociation of CO2 through the formation of negatively charged CO2. Potassium adatoms also promote the dissociation of adsorbed CO over Mo2C. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
《分离科学与技术》2012,47(3):428-433
The separation of bulk quantities of H2S from CO2 was investigated through a series of pressure-swing adsorption experiments utilizing 4A, 5A, and 13X molecular sieves. High selectivity of H2S over CO2 was encountered for all sieves, particularly for the 13X and 5A. Practically pure CO2 was produced in the adsorption stage with fresh 5A and 13X sieves, at high product recovery rates. Efficient H2S purification was obtained with fresh 5A and regenerated 4A zeolites. The experimental results were in line with theoretical predictions of the literature.  相似文献   

14.
15.
Stabilizing atmospheric CO2 concentration requires the development of novel methods for capturing it in the form of permanent reservoirs. Among the proposed methods is CO2 storage in the form of hydrate. In this study a method was established for CO2 conversion to hydrate. This method can be applied to bioethanol plants, which produce CO2 as a by-product of ethanol fermentation. In this regard, a tubular recirculating flow reactor was developed for the study of CO2 hydrate formation. The experiments were carried out at 279 K and 3.5–5 MPa to determine the rate of CO2 hydrate formation. Further, a model was developed for prediction of the rate of hydrate formation based on the mass transfer, crystallization, and thermodynamic concepts. The predicted hydrate formation rate was compared to the experimental data in order to validate the model prediction. The predicted results were in good agreement with the experimental data at different operating conditions.  相似文献   

16.
The effects of reaction gases including CO2 and H2O and temperature on the selective low-temperature oxidation of CO were studied in hydrogen rich streams using a flow micro-reactor packed with a Pt–SnO2/Al2O3 sol–gel catalyst that was initially designed and optimized for operation in the absence of CO2 and H2O. 100% CO conversion was achieved over the 1 wt% Pt–3 wt% SnO2/Al2O3 catalyst at 110 °C using a feed composition of 1.0% CO, 1.5% O2, 25% CO2, 10% H2O, 58% H2 and He as balance at a space velocity of 24,000 cm3/(g h). CO2 in the feed was found to decrease CO conversion significantly while the presence of H2O in the feed increased CO conversion, balancing the effect of CO2.  相似文献   

17.
High-resolution electron loss spectroscopy revealed, probably for the first time, that the illumination of adsorbed CO2 on K-promoted Rh(111) induces or enhances formation of the CO2 radical.This laboratory is a part of the Center for Catalysis, Surface and Material Science at the University of Szeged.  相似文献   

18.
By simultaneous reactions of methane with CO2 and O2 over NiO-CaO catalyst under certain reaction conditions, it is possible to convert methane into syngas with low H2/CO ratio (1 2/CO <2) at above 95% conversion, with 100% CO selectivity and above 90% H2 selectivity and also with very high CO productivity without catalyst deactivation due to coking for a long period, in a most energy efficient and safe manner, requiring little or no external energy.  相似文献   

19.
Pressure swing adsorption experiments were carried out for the separation of equimolar mixtures of carbon dioxide and methane containing small amounts of hydrogen sulfide, utilizing 4A, 5A, and 13X molecular sieves. High-purity methane of zero or nearly zero hydrogen sulfide concentration was produced in the adsorption stage with 13X and 5A sieves, at high product recovery rates; high-purity carbon dioxide was obtained with the same sieves in the desorption stage. Zeolite 4A was found capable of raising considerably the hydrogen sulfide concentration in the accumulated desorption product (vs. the adsorption feed) at high recovery rates too. Adsorption selectivity values derived from the experimental results for all three gas pairs were in line with some theoretical predictions and experimental data of the literature.  相似文献   

20.
We have measured the influence of adsorbed H2O on the sticking coefficients and saturation coverages of CO, O2 and D2 on Pt(111) at ∼100 K. Strong poisoning is observed for all three gases. For O2 and D2, the surface is essentially totally poisoned at 1 monolayer (ML) water coverage. For CO, the effect is weaker, with some CO adsorption still occurring at 2–3 ML H2O. The influence of these results on the kinetics of the CO and H2 oxidation reactions are discussed briefly. It is concluded that the influence of water must be included in kinetics simulations, at least at low temperatures, when significant humidity levels are present in inlet gas mixtures, or produced by the reactions themselves. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号