首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A three-dimensional inverse problem in determining the local heat transfer coefficients for the plate finned-tube heat exchangers utilizing the steepest descent method (SDM) and a general purpose commercial code CFX4.4 is applied successfully in the present study based on the measured temperature distributions on fin surface by infrared thermography.Two different tube arrangements (i.e. in-line and staggered) with different fin pitch and air velocity are considered and the corresponding local heat transfer coefficients are to be determined. Results show that some interesting phenomena of the local heat transfer coefficients for the finned surface are found in the work and the averaged heat transfer coefficient of the staggered configuration is about 8–13% higher than that of the in-line configuration.  相似文献   

2.
This paper reports an experimental study on convective boiling heat transfer of nanofluids and de-ionized water flowing in a multichannel. The test copper plate contains 50 parallel rectangular minichannels of hydraulic diameter 800 μm. Experiments were performed to characterize the local heat transfer coefficients and surface temperature using copper–water nanofluids with very small nanoparticles concentration. Axial distribution of local heat transfer is estimated using a non-intrusive method. Only responses of thermocouples located inside the wall are used to solve inverse heat conduction problem. It is shown that the distribution of the local heat flux, surface temperature, and local heat transfer coefficient is dependent on the axial location and nanoparticles concentration. The local heat transfer coefficients estimated inversely are close to those determined from the correlation of Kandlikar and Balasubramanian [An extension of the flow boiling correlation to transition, laminar and deep laminar flows in minichannels and microchannels, Heat Transfer Eng. 25 (3) (2004) 86–93.] for boiling water. It is shown that the local heat flux, local vapor quality, and local heat transfer coefficient increase with copper nanoparticles concentration. The surface temperature is high for de-ionized water and it decreases with copper nanoparticles concentration.  相似文献   

3.
《Applied Thermal Engineering》2007,27(2-3):501-508
Based on the conjugate gradient method, this study presents a means of solving the inverse boundary value problem of coupled heat and moisture transport in a double-layer hollow cylinder. While knowing the temperature and moisture history at the measuring positions, the unknown time-dependent contact heat and mass transfer coefficients can be simultaneously determined. It is assumed that no prior information is available on the functional form of the unknown coefficients. The accuracy of this inverse heat and moisture transport problem is examined by using the simulated exact and inexact temperature and moisture measurements in the numerical experiments. Results show that excellent estimation on the time-dependent contact heat and mass transfer coefficients can be simultaneously obtained with any arbitrary initial guesses.  相似文献   

4.
<正>The present study concerns the measurement of the convective heat transfer coefficient on the solid-fluid interface by the pulsed photothermal method.This non-intrusive technique is apphed for the measurement of the local heat transfer coefficients in cooling of a rectangular slab that simulates an electronic component.The heat transfer coefficient is deduced from the evolution of the transient temperature induced by a sudden deposit of a luminous energy on the front face of the slab.In order to draw up the heat transfer cartography by a non-destructive tool, the infrared thermography has been used.Two inverse techniques for the identification of the heat transfer coefficient are presented here.The first one is based on the assumption that heat transfer coefficient remains constant during the pulsed experiment,and the second one considered it variable in space and time.The temporal and spatial evolutions are expressed as a constant heat transfer coefficient(h_0)multiplied by a function of time and space f(x,t).The function f is deduced from the resolution of the conjugated convection-conduction problem,by a control volume technique for the case of thermally thick sample.The results are given for different air velocities and deflection angles of the flow.  相似文献   

5.
The present study applies the inverse method in conjunction with the experimental temperature data to investigate the accuracy of the heat transfer coefficient on the fin in the plate-fin heat sink for various fin spacings. The commercial software is applied to solve the governing differential equations with the RNG k? model in order to obtain the heat transfer and fluid flow characteristics. Under the assumption of the non-uniform heat transfer coefficient, the entire fin is divided into several sub-fin regions before performing the inverse scheme. The average heat transfer coefficient in each sub-fin region is assumed to be unknown. Later, the present inverse scheme in conjunction with the experimental temperature data is applied to determine the heat transfer coefficient and fin efficiency. In order to determine a more reliable heat transfer coefficient, a comparison between the present inverse and numerical results and those obtained from the existing correlations will be made. The numerical fin temperatures will also be compared with the experimental data.  相似文献   

6.
A method for the measurement of local convective heat transfer coefficients from the outside of a heat-transferring wall has been developed. This method is contact-free and fluid independent, employing radiant heating by laser or halogen spotlights and an IR camera for surface temperature measurements; it allows for the rapid evaluation of the heat transfer coefficient distribution of sizable heat exchanger areas. The technique relies first on experimental data of the phase lag of the outer surface temperature response to periodic heating, and second on a simplified numerical model of the heat exchanger wall to compute the local heat transfer coefficients from the processed data. The IR temperature data processing includes an algorithm for temperature drift compensation, phase synchronization between the periodic heat flux and the measured temperatures, and Single Frequency Discrete Fourier Transformations. The ill-posed inverse heat conduction problem of deriving a surface map of heat transfer coefficients from the phase-lag data is solved with a complex number finite-difference method applied to the heat exchanger wall. The relation between the local and the mean heat transfer coefficients is illuminated, calculation procedures based on the thermal boundary conditions are given. The results from measurements on a plate heat exchanger are presented, along with measurements conducted on pipe flow for validation. The results show high-resolution surface maps of the heat transfer coefficients for a chevron-type plate for three turbulent Reynolds numbers, including a promising approach of visualizing the flow field of the entire plate. The area-integrated values agree well with literature data. CFD calculations with an SST and an EASM–RSM were carried out on a section of a PHE channel. A comparison with the measured data indicates the shortcomings of even advanced turbulence models for the prediction of heat transfer coefficients but confirms the advantages of EASM–RSM in complex flows.  相似文献   

7.
An inverse problem for turbulent forced convection between parallel flat plates is investigated. The space- and time-dependent heat flux at the upper wall is estimated from the temperature measurements taken inside the flow. In the present study, the conjugate gradient method is adopted for the estimation of the unknown wall heat flux. No prior information is needed for the functional form of the wall heat flux in the inverse analysis. The effects of the measurement errors, the functional form of the wall heat flux, and the location of the sensors on the accuracy of the estimation are investigated. The reconstruction of the wall heat flux is satisfactory when simulated exact or noisy data are input to the inverse analysis. The sensitivity coefficients are discussed in this paper. As expected, it is shown that the accuracy of the estimation can be improved when the sensors are located closer to the upper wall.  相似文献   

8.
This paper presents a study on the determination of the heat transfer parameters, namely surface heat transfer coefficients, thermal conductivities, thermal diffusivities, specific heats and Biot numbers, for the individual product being cooled with water and with air. An analytical model was developed to determine the surface heat transfer coefficients of the products depending on the thermal properties and cooling process parameters. The results of the present study indicate that surface heat transfer coefficients decrease with increasing batch weight in water cooling and increase with increasing air flow velocity in air cooling. The proposed model can be used to determine easily and accurately surface heat transfer coefficients of different spherically shaped objects subjected to cooling.  相似文献   

9.
The aim of this paper is to present an inverse heat conduction method used for determining the local convective boiling heat transfer coefficient in mini channel for pure water, copper nanofluid with using three different concentrations of nanoparticles: 5 mg/L, 10 mg/L and 50 mg/L. Sequential specification function method is used to solve the IHCP and estimate the space-variable convective heat transfer coefficient. The uncertainties in the estimated in heat transfer coefficient are calculated using Bias and Variance errors. The technique is used in a series of numerical experiments to provide the optimum experimental design for a boiling heat transfer investigation.  相似文献   

10.
The applied heat flux on the drilling surface of drilling tool is estimated in the present three-dimensional inverse heat conduction problem. The inverse algorithm utilizing the Steepest Descent Method (SDM) and a general purpose commercial code CFX4.4 is applied successfully in this study based on the simulated and measured temperature distributions with time at four sensors embedded on the drilling surfaces. The numerical experiments are considered at the first stage to illustrate the validity of inverse determination of the unknown heat flux using exact and error measurements. Experimental data are then used to estimate the actual heat flux along the drilling edge at two different drill peripheral cutting speeds. Results of both the numerical and experimental examinations show that the reliable estimated heat flux can be obtained by using the present inverse algorithm.  相似文献   

11.
Research into heat transfer modelling in fluidised beds is very limited due to its complexity. The kinetic theory of granular flow (KTGF) has been applied successfully to hydrodynamic modelling in the past but its application in heat transfer modelling has not been tested extensively. A two-fluid Eulerian–Eulerian model has been carried out applying the KTGF to a wall-to-bed reactor. The local heat transfer coefficients are compared against experimental data for two drag models, namely the Gidaspow and the Syamlal–O’Brien drag models. Furthermore, a parametric study is carried out for a variety of coefficients of restitution, particle diameter sizes and inlet velocities. Near wall analysis is carried out in both dense and dilute regions. Both drag models detect the passage of the bubble reasonably well but they predict the complete transition of the bubble past the sensors occurs at slightly different times. The heat transfer coefficients obtained with the Syamlal–O’Brien model showed more local fluctuations than the Gidaspow model because the Syamlal–O’Brien models was developed based on the particle terminal velocities which would indicate a slight sensitivity to a microscopic scale. Extension of the simulation for a longer period makes it possible to reveal that a periodic distribution occurred after 1.5 s and the local heat transfer coefficients gradually reduced to agree better with the experimental results which were previously over estimated. The study shows that a regular dynamic pattern is established in the bubbling fluidised bed only after 1.5–2 s.  相似文献   

12.
An experiment has been conducted in detail to study the turbulent heat transfer in horizontal helically coiled tubes over a wide range of experimental parameters. We found that the enhancement of heat transfer in the coils results from the effects of turbulent and secondary flows. With Reynolds number increasing to a high level, the contribution of the secondary flow becomes less to enhance heat transfer, and the average heat transfer coefficient of the coil is closer to that in straight tubes under the same conditions. The local heat transfer coefficients are not evenly distributed along both the tube axis and the periphery on the cross section. The local heat transfer coefficients on the outside are three or four times those on the inside, which is half of the average heat transfer. A correlation is proposed to describe the distribution of the heat transfer coefficients at a cross section. The average cross-section heat transfer coefficients are distributed along the tube axis. The average value at the outlet section should not be taken as the average heat transfer coefficient. © 1999 Scripta Technica, Heat Trans Asian Res, 28(5): 395–403, 1999  相似文献   

13.
This work considers a new approach for solving the inverse heat conduction problem of estimating unknown plan heat source. It is shown that the physical heat transfer problem can be formulated as an optimization problem with differential equation constraints. A modified genetic algorithm is developed for solving the resulting optimization problem. The proposed algorithm provides a global optimum instead of a local optimum of the inverse heat transfer problem with highly-improved convergence performance. Some numerical results are presented to demonstrate the accuracy and efficiency of the proposed method.  相似文献   

14.
Experimental study of heat transfer in oscillating flow   总被引:2,自引:0,他引:2  
This paper describes an experimental study of heat transfer in oscillating flow inside a cylindrical tube. Profiles of temperature are taken inside the wall and in the fluid from an instrumented test rig, in different conditions of oscillating flow. Profiles obtained allow the observation of the wall effect on heat transfer. A method using the inverse heat conduction principle allows the characterization of local heat transfers at the fluid-solid interface. Finally, a comparison between global and local approaches of heat transfer shows the difficulty of defining a dimensionless heat flux density to model local heat transfer in oscillating flow.  相似文献   

15.
This paper is the second portion of a two-part study concerning the flow boiling of liquid nitrogen in the micro-tubes with the diameters of 0.531, 0.834, 1.042 and 1.931 mm. The contents include the heat transfer characteristics and critical heat flux (CHF). The local wall temperatures are measured, from which the local heat transfer coefficients are determined. The influences of heat flux, mass flux, pressure and tube diameter on the flow boiling heat transfer coefficients are investigated systematically. Two regions with different heat transfer mechanism can be classified: the nucleate boiling dominated region for low mass quality and the convection evaporation dominated region for high mass quality. For none of the existed correlations can predict the experimental data, a new correlation expressed by Co, Bo, We, Kp and X is proposed. The new correlation yields good fitting for 455 experimental data of 0.531, 0.834 and 1.042 mm micro-tubes with a mean absolute error (MAE) of 13.7%. For 1.931 mm tube, the flow boiling heat transfer characteristics are similar to those of macro-channels, and the heat transfer coefficient can be estimated by Chen correlation. Critical heat flux (CHF) is also measured for the four tubes. Both the CHF and the critical mass quality (CMQ) are higher than those for conventional channels. According to the relationship that CMQ decreases with the mass flux, the mechanism of CHF in micro-tubes is postulated to be the dryout or tear of the thin liquid film near the inner wall. It is found that CHF increases gradually with the decrease of tube diameter.  相似文献   

16.
Heat transfer and flow behaviours past a horizontal surface with two-dimensional transverse ribs were numerically investigated using a CFD model. The present model was adopted for turbulent flow of air past a number of rib arrays with different rib pitch to height ratios heated with a uniform heat flux. The temperature profiles and the local heat transfer coefficients as well as the flow velocity and turbulence characteristics were predicted. The results showed that the presence of the transverse ribs yields a significant enhancement of the heat transfer compared with that for a flat plate and the predicted heat transfer coefficients showed good agreement with previous experimental results. Also, peaks in local heat transfer coefficients were predicted within the interrib regions and were found to coincide with the points of reattachment of the separated flows.  相似文献   

17.
In this study, an inverse algorithm based on the conjugate gradient method and the discrepancy principle is applied to solve the inverse heat conduction problem with a dual-phase-lag equation for estimating the unknown space- and time-dependent laser-induced heat generation in a gas-saturated porous medium exposed to short-pulse laser heating from the temperature measurements taken within the medium. Subsequently, the powder particle temperature distributions in the porous medium can be determined as well. The temperature data obtained from the direct problem are used to simulate the temperature measurements. The effect of measurement errors on the estimation accuracy is also investigated. The inverse solutions are justified based on the numerical experiments in which two different forms of heat generation are estimated. Results show that the unknown laser-induced heat generation can be predicted precisely by using the present approach for the test cases considered in this study.  相似文献   

18.
Heat transfer with liquid–vapor phase change in microchannels can support very high heat fluxes for use in applications such as the thermal management of high-performance electronics. However, the effects of channel cross-sectional dimensions on the two-phase heat transfer coefficient and pressure drop have not been investigated extensively. In the present work, experiments are conducted to investigate the local flow boiling heat transfer of a dielectric fluid, Fluorinert FC-77, in microchannel heat sinks. Experiments are performed for mass fluxes ranging from 250 to 1600 kg/m2 s. Seven different test pieces made from silicon and consisting of parallel microchannels with nominal widths ranging from 100 to 5850 μm, all with a nominal depth of 400 μm, are considered. An array of temperature sensors on the substrate allows for resolution of local temperatures and heat transfer coefficients. The results of this study show that for microchannels of width 400 μm and greater, the heat transfer coefficients corresponding to a fixed wall heat flux as well as the boiling curves are independent of channel size. Also, heat transfer coefficients and boiling curves are independent of mass flux in the nucleate boiling region for a fixed channel size, but are affected by mass flux as convective boiling dominates. A strong dependence of pressure drop on both channel size and mass flux is observed. The experimental results are compared to predictions from a number of existing correlations for both pool boiling and flow boiling heat transfer.  相似文献   

19.
Mehmet Arik 《传热工程》2013,34(9):763-773
It has been shown that synthetic jets can enhance heat transfer in air-cooling during natural convection heat transfer. Those meso scale devices are expected to be one of the methods of choice for cooling confined space, low heat-generating electronics. The present study focuses on the local and global heat transfer coefficients of a high-frequency meso scale synthetic jet. The experiments have been completed with synthetic jets, which are 12.5 mm in diameter and 2 mm thick with a square orifice of 1 mm. A synthetic jet has been driven at the resonance frequency of 4500 Hz, and voltage was between 30 V and 50 V. Earlier studies have focused on understanding the effect of voltage and driving frequency on the average heat transfer effect, while the current study aims for determining local heat transfer. A microscopic infrared thermal imaging technique was used to acquire local temperature distributions, and the data were analyzed for local convective and radiative heat transfer coefficients. Four square heaters (each with a different size) have been studied in the current study to determine the effect of the characteristic length as well. Heat transfer enhancements over the specific heater sizes are presented, and it is found to be between 4 and 10 times of natural convection.  相似文献   

20.
INTRODUCTI0NInverseradiati0nproblemshavedefinedasubjectofinterestf0rthepast3Oyears0nsoandthereex-istsac0nsiderablebody0fknowledgesurroundingthesubjectthathasbeenextensivelyreviewedinaseries0fpapersbyM.C.rmick[1-4].Theyarecon-cernedwiththedeterminati0noftheradiativepr0p-ertiesandthetemperaturedistributionsofmediaus-ingvari0ustypesofradiationmeasurements.Despitetherelativelylargeinterestexpressedininverseradia-tionproblems,mostoftheworkfocusedontheinverseestimati0noftemperaturedistributions…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号