首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A study was performed to determine information available to reactor operators for assessing core status during severe accidents. Beginning with a simplified accident event tree describing possible final plant states, an instrumentation availability matrix was developed to identify potential gaps in current nuclear plant instrumentation. This matrix was further developed for a representative PWR system. The major study conclusion is that the largest potential gap lies in methods available for directly determining the stage of core degradation. This inadequacy influences the potential effectiveness of off-site emergency response planning, and also the ability of plant personnel to mitigate against the further worsening of the plant condition. Possible methods for improving direct indications of core damage are discussed with the recommendation that further study and experimentation be conducted in this area.  相似文献   

2.
先进核电厂半球顶安全壳抗震分析   总被引:1,自引:0,他引:1  
安全壳是核电厂反应堆主厂房的围护结构,是防止设计事故发生时放射性物质扩散的最后一道屏障,是确保核电厂安全的关键设施.因此,必须在设计中考虑到安全壳在可能的、会引发重大核事故的意外荷载作用下的工作性能.地震是核电厂整个使用过程中有可能出现的自然灾害之一,并可能引发重大事故,所以,必须对安全壳结构进行严格的抗震性能分析,设计要保证预应力混凝土安全壳能够承受SSE作用而不被损坏.本文通过有限元模型的计算与分析,得到先进核电厂半球顶安全壳结构在SSE作用下的应力、变形、位移等地震反应,由此进行安全壳结构构件抗震分析计算.计算表明,半球顶安全壳结构在SSE作用下,安全壳结构安全可靠,结构的设计能够满足我国核电厂安全导则对抗震Ⅰ类结构的规定.  相似文献   

3.
In February 1986 licensing requirements regarding severe accidents in nuclear power plants were given by the Swedish Government. This regulation constitutes conditions for operation of the plants beyond 1988. The requirements are based on the conditions previously given for the Barsebäck plant including construction of the filtered venting system, which was completed at Barsebäck in 1985.For the Forsmark and Ringhals plants a strategy is being implemented to meet the new requirements. A strong emphasis is put on both hardware and procedural measures to bring the reactor core back to stable cooling - even if it is severely damaged - and maintain the containment integrity during an accident. The hardware modifications include measures to prevent temperature or pressure induced early containment failure for the BWRs, reliable back-up water sources for containment spray and means for filtered venting of all plants to prevent late containment failure by overpressure. The ultimate aim is to minimize the environmental impact of a severe accident and meet a release limit set at 0.1% of the core fission product inventory excluding noble gases.  相似文献   

4.
严重事故条件下,评估安全壳内的放射性剂量率水平对核电厂严重事故管理、应急响应等环节具有重要指导意义。本工作利用MELCOR程序模拟严重事故序列,计算不同核素组释放进入安全壳内的质量;利用ORIGEN2程序计算不同核素组的堆芯积存量及核素的γ源强;利用MCNP程序计算每组核素100%释放进入安全壳所产生的剂量率水平;最后根据拟合公式求解安全壳剂量率。中核核电运行管理有限公司30万千瓦机组安全壳剂量率的计算结果说明该方法切实可行。  相似文献   

5.
New design and evaluation method for hydrogen management of containment atmosphere have been developed for application in the future boiling water reactor (BWR). These are intended as a part of consideration of severe accidents in the course of design so as to assure a high level of confidence that a large release of radioactivity to the environment that may result in unacceptable social consequences can reasonably be avoided. Emphasis on hydrogen management and protection against overpressure failure is based on the insights from probabilistic safety assessments (PSAs) that late phase overpressure (and associated leakage) and molten corium concrete reaction (MCCI) need attention to ensure that containment remains intact, in case energetic challenges to the containment such as DCH (direct containment heating) or FCI (fuel coolant interactions) are practically eliminated by design or resolved from risk standpoint of view. The authors studied the use of palladium-coated tantalum for hydrogen removal from containment atmosphere in order to avoid pressurization of the containment with small free volume by non-condensable gas and steam. Its effectiveness for ABWR (advanced boiling water reactor) containment was evaluated using laboratory test data. Although further experimental studies are necessary to confirm its effectiveness in real accident conditions, the design is a promising option and one that could be backfitted upon necessity to existing plants for which pressure retaining capability cannot be altered. Also new evaluation method for flammability control under severe accident conditions was developed. This method employes a realistic assessment of the amount of oxygen and hydrogen gases generated by radiolytic decomposition of water under severe accident conditions and their subsequent transport from water to containment atmosphere.  相似文献   

6.
反应堆发生事故最严重的后果是放射性裂变产物弥散到环境中,为了研究严重事故工况下放射性裂变产物碘在安全壳内的分布特点,本研究假设核电厂已经发生严重事故,一回路裂变产物碘释放到安全壳内。使用事故源项评估程序(ASTEC)构建核电厂安全壳结构模型,并设置边界条件,计算了裂变产物碘在不同pH值、有无金属银注入和气相辐照工况下的化学形态、化学特性、分布情况以及不同化合物的变化趋势。研究结果表明,碱性环境下可以降低安全壳内挥发性碘的生成;银的存在可以增加液相中碘的捕获和降低碘的挥发;气相辐照环境可以提高气相CH3I 和IOx的形成。本研究可以为严重事故工况下安全壳内放射性碘的去除提供支持。   相似文献   

7.
先进非能动压水堆设计采用自动卸压系统(ADS)对一回路进行卸压,严重事故下主控室可手动开启ADS,缓解高压熔堆风险。然而ADS的设计特点可能导致氢气在局部隔间积聚,带来局部氢气风险。本文基于氢气负面效应考虑,对利用ADS进行一回路卸压的策略进行研究,为严重事故管理提供技术支持。选取全厂断电始发的典型高压熔堆严重事故序列,利用一体化事故分析程序,评估手动开启第1~4级ADS、手动开启第1~3级ADS、手动开启第4级ADS 3种方案的卸压效果,并分析一回路卸压对安全壳局部隔间的氢气负面影响。研究结果表明,3种卸压方案均能有效降低一回路压力。但在氢气点火器不可用时,开启第1~3级ADS以及开启第1~4级ADS卸压会引起内置换料水箱隔间氢气浓度迅速增加,可能导致局部氢气燃爆。因此,基于氢气风险考虑,建议在实施严重事故管理导则一回路卸压策略时优先考虑采用第4级ADS进行一回路卸压。  相似文献   

8.
In the study of severe pressurized water reactor accidents, the scenarios that describe the relocation of significant quantities of liquid corium at the bottom of the lower head are usually investigated from the mechanical point of view. In these scenarios, the risk of a breach and the possibility of a large quantity of corium being released from the lower head exists. This may lead to an out of vessel steam explosion or to direct heating of the containment; both which have the potential to lead to early containment failure.Within the framework of the OECD Lower Head Failure (OLHF) programme, a simplified model based on the theory of shells of revolution under symmetrical loading was developed by IRSN. After successfully interpreting some other representative experiments on lower head failures, the model was recently integrated into the European integral severe accident computer ASTEC code. The model was also used to obtain the thermo-mechanical behaviour of a 900-MWe pressurized water reactor lower head, subjected to transient heat fluxes under severe accident conditions.The main objective of this paper is to present: (1) the full mathematical formulations used in the development of the model, including their matrices and integrals defined by analytical expressions; (2) the two creep laws implemented, one for the American steel SA533B1 and one for the French steel 16MND5; and (3) the various numerical interpretations of experiments using the simplified model. This paper can be considered as a theoretical manual to aid users of the simplified model during modelling of lower head failures under severe accident conditions. One of the applications presented in this paper concerns the determination of a diagram representing the vessel time to failure as a function of the pressure level and the heat flux intensity. This information has been used by IRSN in probabilistic safety assessment and severe accident management analyses.  相似文献   

9.
针对中国改进型百万千瓦级压水堆(CPR1000)核电机组在中间停堆反应堆余热排出系统(RRA)连接模式下失去高低压安注和喷淋的冷却剂丧失事故(LOCA),采用MAAP5程序对参考机组的反应堆堆芯、反应堆冷却剂系统以及安全壳系统进行模拟计算,同时结合计算结果分析中压安注系统对该严重事故序列进程的影响,并研究其对事故的缓解作用。分析结果表明,在RRA连接模式下出现LOCA导致的堆芯裸露和升温过程中,中压安注的及时注入能有效地限制堆芯的升温行为,并可对严重事故进程起到重要的缓解作用,甚至为事故工况下失去高低压安注和喷淋时避免堆芯完整性遭到破坏提供可能。最后,根据分析结果针对现行核电机组的运行规程提出改进建议:对于中压安注箱的行政隔离行为,只对其电气开关做相应的隔离操作,而对安全壳厂房内的阀门就地部分做挂牌警示,不做现场挂锁的操作,这样不仅可避免在正常运行工况下中压安注箱误注入行为的发生,同时能够在RRA连接模式下发生LOCA时有效地保障堆芯的完整性,在保证电厂正常安全运行的同时,提高了机组在该模式下发生严重事故的缓解能力。   相似文献   

10.
大型先进压水堆通过堆内熔融物滞留(IVR)策略来缓解严重事故后果以降低安全壳失效风险。其中堆腔注水系统(CIS)被引入来实现IVR。本文使用严重事故分析软件计算大型先进压水堆在冷管段双端断裂事故下的事故进程、热工水力行为、堆芯退化过程和下封头熔融池传热行为,评估能动CIS的事故缓解能力。计算结果表明,事故后72 h,下封头外表面热流密度始终低于临界热流密度(CHF),表明IVR策略有效。此外,计算分析了惰性气体、非挥发性和挥发性裂变产物的释放和迁移行为。计算发现,IVR下更多的放射性裂变产物分布在主系统内,壁面核素再悬浮形成气溶胶的行为被消除,安全壳壁面上沉积的核素被大量冷凝水冲刷进入底部水池。总体来说,IVR策略能更好地管理放射性核素分布,减小放射性泄漏威胁。  相似文献   

11.
The 3rd Periodic Safety Review of the French 1300 MWe PWRs series includes some modifications to increase their robustness in case of a severe accident. Their review is based on both deterministic and probabilistic approaches, keeping in mind that severe accidents frequencies and radiological consequences should be as low as reasonably practicable, severe accidents management strategies should be as safe as possible and the robustness of equipment used for severe accident management should be ensured.Consequently, the IRSN level 2 probabilistic safety assessment (L2 PSA) studies for the 1300 MWe reactors have been used to re-assess the results of the utility's L2 PSA and rank them to identify the containment failure modes contributing the most to the global risk. This ranking helped the review of plant modifications.Regarding strategies for accident management, the EDF management of water in the reactor cavity during a severe accident for the 1300 MWe PWRs is presented as well as the IRSN position on this strategy: this is an example where the optimal severe accident management strategy choice is not so easy to define.Regarding the robustness of equipment used for severe accident management, the interest of a diversification or redundancy of the French emergency filtered containment venting opening is one example among many others.This paper presents the analysis conducted by IRSN during the 3rd periodic safety review of the French 1300 MWe PWRs. Future NPP upgrades to limit radioactive releases in case of containment filtered venting, to prevent containment venting and basemat melt-through are analysed in another framework (post-Fukushima and long-term operation projects).  相似文献   

12.
In nuclear reactor probabilistic safety analyses (PSAs), risk is usually defined by the frequency and magnitude of radioactive releases to the environment (Generic CANDU, 2002). An integrated Level-1, -2 and -3 PSA have been carried out for thorium based natural circulation driven advanced heavy water reactor (AHWR). A Level-1 PSA models accident sequences up to the point at which the reactor core either reaches a stable condition or becomes severely damaged, releasing large amounts of radionuclides into the containment. The probabilistic aspects of the analysis focus on the performance and reliability of nuclear plant systems and station staff in response to plant upsets. A Level-2 PSA examines severe reactor accidents through a combination of probabilistic and deterministic approaches, in order to determine the release of radionuclides from containment, including the physical processes that are involved in the loss of structural integrity of the reactor core (Generic CANDU, 2002). A Level-3 PSA goes through the short and long term (radiological) effects on the public (Fullwood, 2000). In this study the risk associated with internal events is only addressed. In the first phase, Level-1 PSA has been carried out to identify postulated initiating events (PIEs) which may lead to severe core damage (SCD) for the reactor. In the second phase, a Level-2 PSA examines two enveloping severe accidents through a combination of probabilistic and deterministic approaches and determines the release of radionuclides from containment. In the third phase, a Level-3 PSA is carried out for the transport of radionuclides through the environment and for the evaluation of public health risk for the two scenarios considered. The salient findings are presented in the paper.  相似文献   

13.
Station blackout is reported to be a sequence that would likely be a significant contributor to the accident risk at a boiling water reactor (BWR). The occurrence frequency of station blackout is evaluated in probabilistic safety assessment (PSA) to be 6×10?6 per reactor year at Limerick and less than 10?7 per reactor year at BWR in Japan.

This report describes an analytical study of thermal-hydraulic and radionuclide behavior during a postulated severe accident of station blackout at a reference BWR plant. The analytical approach was shown in both of hand calculation and the THALES/ART code calculation to better understand wide physical and chemical phenomena in the processes of severe accidents.

We evaluated timing of key events, core cooling and core temperature, reactor vessel failure, debris temperature, containment pressure, and release and deposition of radionuclide in the containment. The THALES and CORCON models on the chemical reactions in the core-concrete interaction lead to great differences in the increasing rate of containment pressure and the release rate of fission products from the core debris.  相似文献   

14.
All commercial boiling water reactor (BWR) plants in the US employ primary containments of the pressure suppression design. These primary containments are surrounded and enclosed by secondary containments. While not designed for severe accident mitigation, these secondary containments might also reduce the radiological consequences of severe accidents. This issue is receiving increasing attention due to concerns that BWR MK I primary containment integrity would be lost should a significant mass of molten debris escape the reactor vessel during a severe accident.The fission product retention capability of an intact secondary containment will depend on several factors. Recent analyses indicate that the major factors influencing secondary containment effectiveness include: the mode and location of the primary containment failure, the internal architectural design of the secondary containment, the design of the standby gas treatment system, and the ability of fire protection system sprays to remove suspended aerosols from the the secondary containment atmosphere. Each of these factors interact in a very complex manner to determine secondary containment severe accident mitigation performance.This paper presents a brief overview of US BWR secondary containment designs and highlights plant-specific features that could influence secondary containment severe accident survivability and accident mitigation effectiveness. Current issues surrounding secondary containment performance are discussed, and insights gained from recent secondary containment studies of Browns Ferry, Peach Bottom, and Shoreham are presented. Areas of significant uncertainty are identified and recommendations for future research are presented.  相似文献   

15.
Concerns about the local hydrogen behavior in a nuclear power plant (NPP) containment during severe accidents have increased with the 10CFR50.34(f) regulation after TMI accident. Consequently, investigations on the local hydrogen behaviors under severe accident conditions were required. An analytical model named HYCA3D was developed at Seoul National University (SNU) to predict the thermodynamics and the three dimensional behavior of a hydrogen/steam mixture, within a subdivided containment volume following hydrogen generation during a severe accident in NPPs. In this study, the HYCA3D code was improved with a steam condensation and spray model, and verified with hydrogen mixing experiments executed in a SNU rectangular mixing facility. Helium was used to simulate hydrogen in both the calculations and the experiments. The calculation results show good agreement with the experimental data.  相似文献   

16.
Design requirements for the advanced light water reactor (ALWR) have been developed so as to provide high assurance of containment integrity even in the event of a severe accident. The containment integrity requirements are in the form of two design criteria, and associated methodology, which address containment severe accident performance and offsite dose and are specified in the ALWR utility requirements document (URD), a set of detailed design requirements for next generation plants in the US.The containment performance criterion, which is the main focus of this paper, specifies that plant design characteristics and features shall be provided to preclude core damage sequences which could bypass containment and to withstand core damage sequence loads. This containment performance capability, along with the associated dose mitigation capability, provides a technical basis for emergency planning change since there would not be the same need for rapid offsite emergency response that is called for under the existing US emergency planning basis.  相似文献   

17.
A systematic step-by-step framework for analyzing hydrogen behavior and implementing passive autocatalytic recombiners (PARs) to mitigate hydrogen deflagration or detonation risk in severe accidents (SAs) is presented. The procedure can be subdivided into five main steps: (1) modeling the containment based on the plant design characteristics, (2) selecting the typical severe accident sequences, (3) calculating the hydrogen generation including in- and ex-vessel period, (4) modeling the gas distribution in containment atmosphere and estimating the hydrogen combustion modes and (5) evaluating the efficiency of the PAR-system to mitigate the hydrogen risk with and without catalytic recombiners, according to the safety criterion. For the Chinese 600MWe pressurized water reactor (PWR) with a large-dry containment, large break loss-of-coolant accident (LB-LOCA) is screened out as the reference severe accident sequence, considering the nature of hydrogen generation and the probabilistic safety assessment (PSA) result on accident sequences. The results show that a certain number of recombiners could remove effectively hydrogen and oxygen, to protect the containment integrity against hydrogen deflagration or detonation.  相似文献   

18.
A systematic study was carried out to investigate the hydrogen behaviour in a BWR reactor building during a severe accident. BWR core contains a large amount of Zircaloy and the containment is relatively small. Because containment leakage cannot be totally excluded, hydrogen can build up in the reactor building, where the atmosphere is normal air. The objective of the work was to investigate, whether hydrogen can form flammable and detonable mixtures in the reactor building, evaluate the possibility of onset of detonation and assess the pressure loads under detonation conditions. The safety concern is, whether the hydrogen in the reactor building can detonate and whether the external detonation can jeopardize the containment integrity. The analysis indicated that the possibility of flame acceleration and deflagration-to-detonation transition (DDT) in the reactor building could not be ruled out in case of a 20 mm2 leakage from the containment. The detonation analyses indicated that maximum pressure spike of about 7 MPa was observed in the reactor building room selected for the analysis.  相似文献   

19.
The international PHEBUS-FP programme was initiated in 1988 and performed by the French Institute de Protection et de Sûreté Nucléaire (IPSN) to investigate the key phenomena of severe water reactor accident. The main objective of the programme is to study the release, transport and retention of fission products in an in-pile facility under conditions representative of a severe accident in a light water reactor. The Lithuanian Energy Institute has joined the programme in 2005 and most of the efforts were directed to investigation of containment phenomena.This paper presents overview of the analyses performed to investigate aerosol transport and deposition phenomena in PHEBUS containment during FPT-1 test. A lumped parameter code COCOSYS was used for the analysis. Parametric analyses were performed to investigate the influence of aerosol density, solubility and diffusive boundary layer thickness on the deposition rate and deposition distribution of particles in PHEBUS containment. The performed analysis showed only minor influence of the selected parameters on the results of FPT-1. Also it was observed that the diffusive boundary layer thickness should not be defined too small.  相似文献   

20.
This paper presents a methodology utilizing an accident management strategy in order to determine accident environmental conditions to be used as inputs to equipment survivability assessments. In the case that there is a well-established accident management strategy for a specific nuclear power plant (NPP), an application of this tool can provide a technical rationale on equipment survivability assessment so that plant-specific and time-dependent accident environmental conditions could be practically and realistically defined in accordance with the equipment and instrumentation required for the accident management strategy or appropriate actions. For this work, three different tools are introduced; probabilistic safety assessment (PSA) outcomes, major accident management strategy actions, and accident environmental stages (AESs). In order to quantitatively investigate an applicability of accident management strategy on equipment survivability, the accident simulation for most likely scenario in Korean standard nuclear power plants (KSNPs) is performed with the MAAP4 code. The accident management guideline (AMG) actions such as the reactor coolant system (RCS) depressurization, water injection into the RCS, the containment pressure and temperature control, and hydrogen concentration control in containment are applied. The effects of these AMG actions on the accident environmental conditions are investigated by comparison to actions from previous normal accident simulation, especially focusing on equipment survivability assessment. As a result, the AMG-involved case shows the higher accident consequences along the accident environmental stages. This implies that plant-specific AMG actions need to be considered in order to determine accident environmental conditions in equipment survivability assessments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号