首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
To address a possible impairment of multidrug resistance mechanisms in acquired aplastic anaemia (AA), the functions of P-glycoprotein (P-gp) and multidrug resistance-associated protein (MRP) were respectively assessed by rhodamine 123 (Rh123) and daunorubicin (DNR) efflux in peripheral blood lymphocytes from AA patients. The proportion of Rh123-effluxing T cells was significantly decreased in AA, relative to controls. Interestingly, these changes were also present in patients with AA in remission. Conversely, Rh123 efflux in B and natural killer (NK) cells and DNR efflux in peripheral blood lymphocytes were unchanged. These data indicated that P-gp activity was decreased in AA not only during the development of the disease, but also after remission, introducing a new concept on the pathophysiology of AA by suggesting that it may contribute to drug-induced injury to haemopoietic cells in some cases of AA, by increasing the proportion of susceptible cells.  相似文献   

4.
Cellular drug resistance, which involves several mechanisms such as P-glycoprotein (P-gp) overexpression, kinetic and metabolic quiescence, or the increase in the intracellular levels of glutathione, limits the effectiveness of cancer treatment. It has been reported that functional assessment of the cationic dye rhodamin 123 (Rho123) efflux reveals accurately the drug-resistant phenotype. To study cellular drug resistance, we have obtained a CHO-K1 derived cell line resistant to vinblastine by means of multistep selection. This cell line (CHOVBR) displays high reactivity with a monoclonal antibody (MAb) (C219) directed against an internal domain of P-gp, and an active Rho123 efflux, as shown by parallel flow cytometric and fluorometric assays. However, under similar experimental conditions, the drug-sensitive parental cell line CHO-K1 (as well as the myeloblastic KG1 and KG1a cell lines), was also able to pump Rho123 out. These parental CHO-K1 cells had a very low reactivity against the C219 Mab, as confirmed by Western blot analysis. Both vinblastine and verapamil inhibited Rho123 efflux in CHO-K1 cells, but had no effect on CHOVBR cultures. Also, deprivation of vinblastine for one month did not affect Rho123 efflux in these cells. Our results suggest that the activity of P-gp appears to be essential, but not sufficient to confer drug resistance, and that Rho123-based functional assays of drug resistance should be evaluated for each cellular experimental model.  相似文献   

5.
Peripheral blood CD4+ and CD8+ T cells from 16 patients with HIV-1 infection, 8 each with CD4+ T cell counts of > 200/mm3 (group I) and with CD4+ T cell counts of < 200/mm3 (group II), and 8 age- and sex-matched controls, were examined for the expression of P-glycoprotein (P-gp), a 170-kDa phosphoglycoprotein encoded by the MDR1 gene, using dual-color flow cytometric analysis. The function of P-glycoprotein was assessed by the accumulation of rhodamine-123 (Rh123) dye in the presence or absence of cyclosporin A (which inhibits Rh123 efflux). A significantly increased proportion of CD4+ T cells from patients with HIV-1 infection expressed P-glycoprotein as compared to controls, resulting in a significantly increased ratio of the proportions of CD4+P-gp+/CD8+P-gp+ cells. The ratio of CD4+P-gp+/CD8+P-gp+ in group II patients was significantly higher (p = 0.02) than in group I patients, suggesting a progressive increase in P-gp expression with the advancement of HIV-1 infection. The proportions of CD4+P-gp+ and CD8+P-gp+ T cells did not differ significantly between those who received AZT and those who were not treated with AZT. Contrary to expectation, both CD4+ and CD8+ T cells from patients accumulated significantly more Rh123 as compared to controls. Furthermore, cyclosporin A failed to increase intracellular accumulation of Rh123 in CD4+ and CD8+ T cells from patients. These data suggest a functionally defective P-gp expression in HIV-1 infection that appears to increase with the progression of HIV-1 infection. A study of a large number of patients with HIV-1 infection is needed to determine the effects of opportunistic infection and antiretroviral therapy on the expression of P-gp and to determine whether the expression of P-gp could serve as another surrogate marker for the progression of HIV-1 infection.  相似文献   

6.
PSC 833, a nonimmunosuppressive cyclosporin, is able to inhibit the efflux of antitumor drugs mediated by P-glycoprotein (P-gp). The purpose of the present study is to compare the effect of PSC 833 on the tumor disposition of [3H]vincristine ([3H]VCR) and [3H]vinblastine ([3H]VBL) in in vitro and in vivo experiments from a pharmacokinetic point of view. In in vitro experiments, the effect of PSC 833 was investigated on the cellular uptake of [3H]VCR and [3H]VBL by HCT-15 and COLO 205, human colorectal tumor cell lines with extensive and minimal expression of P-gp, respectively. PSC 833 (2 microM) increased the cellular uptake of [3H]VCR and [3H]VBL by HCT-15 cells, but not that by COLO 205 cells, 8- and 6-fold, respectively, without affecting the initial influx rates. In addition, 2 microM PSC 833 reduced the efflux of [3H]VCR from HCT-15 cells to a level comparable with that from COLO 205 cells. Furthermore, the effect of PSC 833 on the tumor disposition of intravenously administered [3H]VCR and [3H]VBL was studied in tumor inoculated mice. Infusion of PSC 833 (10 microg/hr/mouse) increased the HCT-15 tumor disposition of [3H]VBL and [3H]VCR in vivo to a level comparable with that observed in vitro. These findings demonstrate that PSC 833 enhances the tumor disposition of vinca alkaloids by inhibition of P-gp-mediated efflux not only in vitro but also in vivo in a solid tumor model.  相似文献   

7.
Leukemia/lymphoma cells, clinically refractory to therapy are often associated with expression of P-glycoprotein (P-gp), which is encoded by the multidrug resistance (MDR) gene, mdr1. Cell lines expressing mdr1 exhibit resistance to several structurally unrelated lipophilic drugs, such as anthracyclines, vinca alkaloids, and epopodophyllotoxins. This MDR can be conferred to drug-sensitive cells mdr1 cDNA transfer. In resistant cells, MDR is characterized by overexpression of P-gp and by the enhanced efflux, and P-gp fluorescence probe, rhodamine 123 (Rh 123). This can be circumvented by addition of certain non-cytotoxic drugs, such as verapamil and cyclosporin A.  相似文献   

8.
PURPOSE: Drug disposition is often altered in inflammatory disease. Although the influence of inflammation on hepatic drug metabolism and protein binding has been well studied, its impact on drug transport has largely been overlooked. The multidrug resistance (MDR) gene product, P-glycoprotein (P-gp) is involved in the active secretion of a large variety of drugs. Our goal was to ascertain the influence of acute inflammation (AI) on the expression and functional activity of P-gp. METHODS: AI was induced in rats through turpentine or lipopolysaccharide (LPS) administration. Expression of P-gp in liver was detected at the level of protein on Western blots using the monoclonal antibody C-219 and at the level of mRNA using an RNase protection assay. P-gp mediated transport activity was assessed by measuring the verapamil-inhibitable efflux of rhodamine 123 (R123) in freshly isolated hepatocytes. RESULTS: Turpentine-induced AI significantly decreased the hepatic protein expression of P-gp isoforms by 50-70% and caused a significant 45-65% reduction in the P-gp mediated efflux of R123. Diminished mRNA levels of all three MDR isoforms were seen. LPS-induced AI similarly resulted in significantly reduced levels and activity of P-gp in liver. Although differences in the constitutive levels of P-gp were seen between male and female rats, the influence of AI on P-gp expression and activity was not gender specific. CONCLUSIONS: Experimentally-induced inflammation decreases the in vivo expression and activity of P-gp in liver. This is the first evidence that expression of P-gp is modulated in response to experimentally-induced inflammation.  相似文献   

9.
To better understand the phenomenon of P-glycoprotein (P-170) expression we investigated lymphocyte subpopulations for P-170 function in healthy volunteers. Studies were based on three-colour flow cytometry including the fluorescent probe rhodamine 123 (Rh123), which is transported by P-170. Marked Rh123 efflux was detected in CD8+ T lymphocytes with CD8+/CD45RA+ T cells (naive cells) showing significantly higher P-170 activity as compared with CD8+/CD45RA- cells (P<0.04). Vice versa, CD8+/CD45RO+ T cells (memory cells) demonstrated less P-170 activity than CD8+/CD45RO- cells (P<0.04). P-170 function was less prominent in CD4+ T cells, however, Rh123 efflux was higher in the CD4+/CD45RA+ and CD4+/CD45RO- subpopulations (P<0.025) corresponding to the CD8+ results. Dye efflux differed significantly between activated and non-activated CD8+ and CD4+ as well as CD8+/CD11b+ and CD8+/CD11b- T lymphocytes. Since CD16+ natural killer cells (NK) expressed the highest level of P-170, the NK cytotoxicity against 51Cr-labelled K562 target cells was assayed in the presence or absence of P-170 inhibitors. NK related cytotoxicity was significantly reduced in the presence of R-verapamil and dexnigaldipine-HCP in a dose-dependent manner. The differential expression of P-170 activity in naive and memory T cells together with the reduced NK related cytotoxicity in the presence of MDR-modulators suggest a physiological role of P-170 in immunological functions of these lymphocyte subsets. Consequently, the addition of MDR modulators to conventional chemotherapy as a strategy to overcome drug resistance should consider possible adverse immunosuppressive effects.  相似文献   

10.
Cyclosporin A (CsA) is a widely-used immunosuppressant drug whose therapeutic and toxic actions are mediated through inhibition of calcineurin (CN), a calcium- and calmodulin-dependent phosphatase. Inhibition of CN by CsA requires drug binding to its protein cofactor in the inhibition, cyclophilin. Because cyclophilin is a high affinity target for CsA it is expected that this protein can act as a reservoir for the drug in the cell and may be able to inhibit cellular efflux of CsA. P-glycoprotein (P-gp) is known to increase the rate of CsA efflux from CsA loaded cells but it is not clear if the P-gp drug efflux pump can compete effectively with cyclophilin at therapeutically relevant concentrations of CsA. To test the hypothesis that increased expression of P-gp confers protection against CsA-dependent inhibition of CN phosphatase activity, KB-V cells expressing varying levels of P-gp were analyzed to determine the potency of CsA as a CN inhibitor. When intact cells were treated with CsA, a positive correlation was observed between P-gp expression and resistance to CsA-dependent inhibition of CN: the IC50 is approximately 20-fold higher in the multidrug resistant epidermal carcinoma cell line, KB-V, which expresses P-gp at a high level than in the parental, KB, cell line expressing very low levels of P-gp. The resistance displayed by KB-V cells is abrogated by co-administration of the P-gp inhibitor verapamil, whereas verapamil has no effect on CsA potency in control KB cells. In cell lysates from KB-V cells with different amounts of P-gp CsA exhibits equivalent potency, indicating that the difference in sensitivity to CsA among the cell types requires maintenance of cell integrity. These observations support the view that resistance to CN inhibition by CsA occurs in cells with moderately elevated P-gp activity. Therefore, P-gp activity appears to be an important determinant of CsA cellular specificity for both therapeutic and toxic effects.  相似文献   

11.
12.
13.
P-glycoprotein(P-gp)- related resistance is one of the major obstacles in treating leukemia patients. Therefore, it is of clinical interest to find new potential modulators and compare their P-gp-modulating efficacy. The present analysis investigated the influence of P-gp modulators, such as verapamil, tamoxifen, droloxifene E, droloxifene Z, SDZ PSC 833 (PSC 833) and dexniguldipine in a leukemic T-cell line (CCRF-CEM) and its P-gp-resistant counterparts (CCRF-CEM/ACT400 and CCRF-CEM/VCR1000). P-gp expression was assessed with an immunocytological technique using the monoclonal antibody 4E3.16. It was characterized as the percentage of P-gp positive cells and also expressed as a D value by using the Kolmogorov Smirnov statistic. The efficacy of P-gp modulators was determined with the rhodamine-123 accumulation test and the MTT test. An in vitro modulator concentration between 0.1 microM and 3 microM was determined, where no genuine antiproliferative effect was apparent. The modulators PSC 833 and dexniguldipine were the significant (p相似文献   

14.
The inhibitory effects of SDZ PSC 833 (PSC833), a non-immunosuppressive cyclosporin derivative, on the P-glycoprotein (P-gp)-mediated transport of doxorubicin and vinblastine were compared with those of cyclosporin A (Cs-A). The transcellular transport of the anticancer drugs and PSC833 across a monolayer of LLC-GA5-COL150 cells, which overexpress human P-gp, was measured. Both PSC833 and Cs-A inhibited P-gp-mediated transport of doxorubicin and vinblastine in a concentration-dependent manner and increased the intracellular accumulation of doxorubicin and vinblastine in LLC-GA5-COL150 cells. The values of the 50%-inhibitory concentration (IC50) of PSC833 and Cs-A for doxorubicin transport were 0.29 and 3.66 microM, respectively, and those for vinblastine transport were 1.06 and 5.10 microM, respectively. The IC50 of PSC833 for doxorubicin transport was about 4-fold less than that for vinblastine transport, suggesting that the combination of PSC833 and doxorubicin might be effective. PSC833 itself was not transported by P-gp and had higher lipophilicity than Cs-A. These results indicated that the inhibitory effect of PSC833 on P-gp-mediated transport was 5- to 10-fold more potent than that of Cs-A, and this higher inhibitory effect of PSC833 may be related to the absence of PSC833 transport by P-gp and to the higher lipophilicity of PSC833.  相似文献   

15.
Many multidrug-resistant (MDR) cell lines overexpress the epidermal growth factor receptor (EGFR) as well as P-glycoprotein (P-gp). However, the role of the increased EGFR in P-gp-mediated drug resistance remains unclear. Since recent studies suggest that activation of phospholipase C (PLC) could increase the phosphorylation of P-gp, and activation of the EGFR would also activate PLC, we investigated whether the effect of epidermal growth factor (EGF) on the phosphorylation of P-gp was mediated through PLC. Treatment of the human MDR breast cancer cell line, MCF-7/AdrR, with EGF increased the phosphorylation of P-gp by 20-50%. The increased phosphorylation of P-gp was accompanied by stimulation of PLC activity, as measured by the production of inositol, 1,4,5-trisphosphate and diacylglycerol, products of phosphatidylinositol-4,5-bisphosphate hydrolysis. Treatment of MDR cells with EGF also had detectable effects on P-gp function. For example, following incubation of MCF-7/AdrR cells with ECF, we observed a consistent decrease in total vinblastine (VBL) accumulation. Kinetic analysis revealed this change to be due to an increase in membrane efflux. The latter was measured by the initial uptake velocity, which was inhibited by EGF. VBL uptake measured at 0-320 sec was inhibited by 20-40%, which was associated with a similar increase in VBL efflux. EGF had no effect on drug accumulation, uptake, or efflux in sensitive MCF-7 cells. These data indicate that EGF can modulate the phosphorylation and function of P-gp, and suggest that this effect may be initiated by the activation of PLC.  相似文献   

16.
Multidrug resistance (MDR) is considered to be an important impediment to the effective treatment of cancer. P-glycoprotein, the drug efflux pump that mediates this resistance, can be inhibited by a wide variety of pharmacological agents, resulting in the circumvention of the MDR phenotype. SDZ PSC 833 ([3'-keto-Bmt1]-Val2]-cyclosporine), a nonimmunosuppressive cyclosporine D derivative, was identified to be a potent MDR modulator (Gaveriaux et al. J. Cell Pharmacol. 2:225-234; 1991). In this study, the interactions of P-glycoprotein with two cyclosporine derivatives, SDZ PSC 833 and cyclosporine A (CsA, Sandimmune), were analyzed. SDZ PSC 833 enhanced the sensitivity of the MDR cells to anticancer drugs by increasing the accumulation and inhibiting the efflux of cytotoxic agents from resistant cells more efficiently than CsA. The two cyclosporine analogs competed with the labeling of P-glycoprotein by a photoactive cyclosporine derivative. In addition, membrane vesicles derived from resistant cells bound SDZ PSC 833. However, CsA was transported by P-glycoprotein, whereas SDZ PSC 833 was not actively transported. This resulted in a prolonged inhibitory effect by SDZ PSC 833. The studies suggest that the binding of SDZ PSC 833 to P-glycoprotein in the absence of its transport from MDR cells mediated its high potency as an MDR reversing agent. In addition, the comparison of the two cyclosporine analogs indicated that limited chemical modifications of MDR reversing agents can affect their potential to inhibit P-glycoprotein function.  相似文献   

17.
Classically, drug penetration through the blood-brain barrier depends on the lipid solubility of the substance, except for some highly lipophilic drugs, like colchicine and vinblastine, both substrates of P-glycoprotein, a drug efflux pump present at the luminal surface of the brain capillary endothelial cells. Colchicine and vinblastine uptake into the brain was studied in the rat using the in situ brain perfusion technique and two inhibitors of P-glycoprotein, verapamil and SDZ PSC-833. When rats were pretreated with PSC-833 (10 mg/kg, intravenous bolus), colchicine and vinblastine uptake was enhanced 8.42- and 9.08-fold, respectively, in all the gray areas of the rat brain studied. The mean colchicine distribution volume was increased from 0.67 +/- 0.41 to 5.64 +/- 0.70 microliters/g and vinblastine distribution volume from 2.74 +/- 1.15 to 24.88 +/- 4.03 microliters/g. When rats were pretreated with verapamil (1 mg/kg, intravenous bolus), colchicine distribution volume was increased 3.70-fold. The increase in colchicine and vinblastine did not differ between the eight brain gray areas. PSC-833 and verapamil pretreatment had no influence on the distribution volume of either drug in the choroid plexus. Nevertheless, distribution volumes remained small, considering the highly lipophilic nature of the substances. We suggest that P-glycoprotein is either only partially inhibited (difficulty of fully saturating P-glycoprotein, especially under in vivo conditions) or not the only barrier to these two drugs.  相似文献   

18.
We have compared multiple assays for the P-glycoprotein (Pgp/MDR1) phenotype in fresh and thawed adult acute leukemia to validate and quantitate measures for the expression and function of Pgp. The results are related to the Pgp-expressing KB8 and KB8-5 call lines. The most sensitive assay was the measurement of modulation of the rhodamine 123 (R123) fluorescence by 2 micromol/L PSC833, followed by the modulation of the probe calcein-AM. We also found a good intralaboratory and interlaboratory correlation between the values of the R123/PSC833 assay for fresh as well as thawed samples. In addition, the affects of PSC833 on 3H-daunorubicin (DNR) accumulation, DNR fluorescence, and 3H-vincristine accumulation were very similar. The correlation between the DNR/PSC833 and R123/PSC833 test was r = .86 (N = 51). The modulation of drug accumulation by 8 micromol/L verapamil was the some as the PSC833 effect for DNR (117%, N = 21), but was higher for vincristine in every single case (161% v 121%, N = 22; P< .001), indicating additional verapamil effects, not related to Pgp. The correlation of the staining of viable cells for Pgp with the monoclonal antibody MRK16 was r = .77 (N = 52) for the R123/PSC833 functional test and r = .84 (N = 50) for the DNR/PSC833 test. From these results it could be calculated that a maximal increase of the mean DNR accumulation of about 50% can be achieved by blocking Pgp pump activity with PSC833 in leukemic blast samples with the highest mean Pgp expression. Subpopulations of blast calls with higher Pgp activity are likely to be present. Their relevance has to be studied further. The methods outlined here allow the reliable, quantitative monitoring of the Pgp/MDR1 phenotype in leukemias in multicentered, clinical Pgp modulation studies.  相似文献   

19.
Resistance to chemotherapy in multiple myeloma (MM) and acute myeloid leukemia (AML) is frequently caused by multiple drug resistance (MDR), characterized by a decreased intracellular drug accumulation. MDR is associated with expression of P-glycoprotein (P-gp). GF120918, an acridine derivative, enhances doxorubicin cell kill in resistant cell lines. In this study, the effect of GF120918 on MDR cell lines and fresh human leukemia and myeloma cells was investigated. The reduced net intracellular rhodamine-123 (Rh-123) accumulation in the MDR cell lines RPMI 8226/Dox1, /Dox4, /Dox6 and /Dox40 as compared with wild-type 8226/S was reversed by GF120918 (0.5-1.0 microM), and complete inhibition of rhodamine efflux was achieved at 1-2 microM. This effect could be maintained in drug-free medium for at least 5 h. GF120918 reversal activity was significantly reduced with a maximum of 70% in cells incubated with up to 100% serum. GF120918 significantly augmented Rh-123 accumulation in vitro in CD34-positive acute leukemia (AML) blasts and CD38-positive myeloma (MM) plasma cells obtained from 11/27 de novo AML and 2/12 refractory MM patients. A significant correlation was observed between a high P-gp expression and GF120918 induced Rh-123 reversal (P=0.0001). Using a MRK16/IgG2a ratio > or = 1.1, samples could be identified with a high probability of GF120918 reversal of Rh-123 accumulation. In conclusion, GF120918 is a promising MDR reversal agent which is active at clinically achievable serum concentrations.  相似文献   

20.
Novel compounds, composed of two acridone moieties connected by a propyl or butyl spacer, were synthesized and tested as potential modulators of P-glycoprotein (P-gp)-mediated multidrug resistance. The propyl derivative 1,3-bis(9-oxoacridin-10-yl)-propane (PBA) was extremely potent and, at a concentration of 1 microM, increased steady state accumulation of vinblastine (VLB) approximately 9-fold in the multidrug-resistant cell line KB8-5. In contrast to the readily reversible effects of VRP and cyclosporin A on VLB uptake and similar to the effects of the cyclosporin analog PSC 833, this modulation by PBA was not fully reversed 6-8 hr after transfer of cells to PBA-free medium. Continuous exposure to 3 microM PBA was nontoxic and could completely reverse VLB resistance in KB8-5 cells. Consistent with its effects on VLB transport, the drug resistance-modulating effect of PSC 833 was significantly more persistent than that of VRP. However, the effect of PBA was, like that of VRP, rapidly reversed once the modulator was removed from the extracellular environment. PBA was able to compete with radiolabeled azidopine for binding to P-gp and to stimulate P-gp ATPase activity. However, both the steady state accumulation of PBA and the rate of efflux of PBA were similar in drug-sensitive KB3-1 and drug-resistant KB8-5 cells, suggesting that this compound is not efficiently transported by P-gp. These results indicate that PBA represents a new class of potent and poorly reversible synthetic modulators of P-gp-mediated VLB transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号