首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study AISI 1045 steel specimens were plasma nitrided at 803 K for 5 h, in a gas mixture of 75% N2 + 25% H2. The specimens were then chromized in powder mixtures consisting of ferrochromium, ammonium chloride and alumina at 1273 K for 5 h. Scanning electron microscopy (SEM), X-ray diffraction (XRD) analysis and Vickers micro-hardness test were used as characterizing techniques. The thickness of white nitrided layer was around 5 μm, which was mainly composed of iron nitrides and its hardness was around 740 HV. Chromizing of nitride layer resulted in formation of Cr2N chromium nitride and Fe3N iron nitrides. A significant increase was observed in hardness after chromizing of the nitrided layer. Despite its higher hardness, the post chromised specimen showed higher wear rate than single plasma nitrided specimen.  相似文献   

2.
A series of experiments have been conducted on AISI 304 stainless steel using a hollow cathode discharge assisted plasma nitriding apparatus. Specimens were nitrided at high temperatures (520–560 °C) in order to produce nitrogen expanded austenite phase within a short time. The nitrided specimen was characterized by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, potentiodynamic polarization and microhardness tester. The corrosion properties of nitrided samples were evaluated using anodic polarization tests in 3.5% NaCl solution. The nitrided layer was shown to consist of nitrogen expanded austenite and possibly a small amount of CrN precipitates and iron nitrides. The results indicated that rapid nitriding assisted hollow cathode discharge not only increased the surface hardness but also improved the corrosion resistance of the untreated substrate.  相似文献   

3.
王博  孙淑华 《材料导报》2016,30(6):129-129
研究了纯铁及38CrMoAlA钢分别在500℃、0~0.4MPa压力和510℃、0~0.5MPa压力条件下的氨气渗氮行为。提高渗氮压力可显著加速气体渗氮动力学过程,纯铁在500℃和0.4 MPa下气体渗氮处理5h后渗氮层厚度(1160μm)可同比达到常规渗氮层厚度(205μm)的5倍以上,而38CrMoAlA钢经510℃和0.5 MPa压力下渗氮5h后的渗氮层厚度(400μm)几乎与常规渗氮50h所得硬化层厚度(440μm)相当。同时,纯铁及38CrMoAlA钢渗氮层中ε-Fe2-3N与γ′-Fe4N的相比例、氮势及表层硬度均随压力的提高呈现先增加后降低的变化趋势。提出了一种合金结构钢表面高强高韧渗氮层快速复合制备工艺(增压渗氮+冷轧)。与一段式常规渗氮及增压渗氮工艺相比,复合工艺处理表层硬度及韧性均较优良,尤其高剪切应力磨损条件下复合处理表层的耐磨性能最优,在20~600℃热循环处理10~300次条件下复合处理表层的耐热疲劳性能最佳。研究了42CrMo钢在既定的渗氮周期内(6h)以NH3为介质,530℃及不同压力循环次数条件下的气体渗氮行为。在渗氮温度和总时间相同条件下,循环压力气体渗氮样品化合物层随压力循环次数的增加逐渐减薄,渗氮层整体厚度随压力循环次数的增加逐渐增加,同时渗氮表层韧性随压力循环次数的增加逐渐增强。  相似文献   

4.
In this work AISI 1045 steel were duplex treated via plasma nitriding of chromized layer. Samples were pack chromized by using a powder mixture consisting of ferrochromium, ammonium chloride and alumina at 1273 K for 5 h. The samples were then plasma-nitrided for 5 h at 803 K and 823 K, in a gas mixture of 75%N2 + 25%H2. The treated specimens were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) analysis and Vickers micro-hardness test. The thickness of chromized layer before nitriding was about 8 μm and it was increased after plasma nitriding. According to XRD analysis, the chromized layer was composed of chromium and iron carbides. Plasma nitriding of chromized layer resulted in the formation of chromium and iron nitrides and carbides. The hardness of the duplex layers was significantly higher than the hardness of the base material or chromized layer. The main cause of the large improvement in surface hardness was due to the formation of CrxN and FexN phases in the duplex treated layers. Increasing of nitriding temperature from 803 to 823 K enhanced the formation of CrN in the duplex treated layer and increased the thickness of the nitrided layer.  相似文献   

5.
Nitrogen depth profile of plasma nitrided pure iron was measured and evaluated by accurate experimental techniques. Plasma nitriding cycles were carried out on high purity iron substrate in an atmosphere of 75% H2-25% N2. Nitrogen concentration depth profiles in the compound layer and the diffusion zone were characterized by glow discharge optical emission spectroscopy (GDOES) and secondary ion mass spectroscopy (SIMS), respectively. Nitrogen diffusion depths were measured accurately by optical and scanning electron microscopy as well as SIMS technique at different nitriding times. Experimental results indicated good agreement between SIMS data and microscopic evaluations for various nitriding cycles. The results of SIMS showed the nitrogen diffusion depth of about 2000 μm in the diffusion zone for 10 h plasma nitriding at 550 °C. Such high depth had not been detected in previous investigations in which the conventional methods such as EDS, GDS, XPS, EPMA or ion probe techniques were used.  相似文献   

6.
In the present work the corrosion susceptibility of ion nitrided AISI 316L stainless steel was investigated for two different nitriding times and compared with the corrosion susceptibility of the untreated material. Plasma nitriding for short times (30 min) produced the “S” phase or expanded austenite (γN), with a thickness of ∼ 5 μm and a micro-hardness of 1300-1400 HV0.025 (6.5 times higher than the untreated material). Plasma nitriding for long times (6 h) resulted in the precipitation of iron and chromium nitrides.To evaluate the corrosion resistance of both untreated and nitrided samples, anodic potentiodynamic polarization curves and immersion tests were performed in 1 M NaCl at room temperature. It was found that the corrosion resistance depends on the nitriding time. Samples nitrided for half an hour developed a much better corrosion resistance - close to that observed in the untreated samples - than those nitrided for 6 h. Samples nitrided for half an hour showed high roughness probably due to the presence of sliding bands developed in the expanded austenite phase. These sliding bands provide appropriate sites for the developing of the corrosion process. This would explain the results obtained in the corrosion tests. Samples ion nitrided for 6 h showed a severe and massive surface damage due to corrosion.Ion nitriding of AISI 316L stainless steel for short periods of time (30 min in the present case) may be an interesting surface treatment process that efficiently improves the surface hardness of the steel with some reduction in its corrosion resistance.  相似文献   

7.
The quenched M50NiL steel was plasma nitrided at 460°C for different time to investigate the effects of the duration time on the microstructure, microhardness and wear resistance of the nitrided layers. The results show that the plasma nitrided layer depth increases with increasing nitriding time. The plasma nitrided layer includes only the diffusion layer without compound layer. The main phases in the nitrided surface layer are nitrogen expended α′-Fe and γ′-Fe4N. The microstructure of the nitrided layer is refined. The wear resistance of the nitrided samples can be improved significantly by plasma nitriding. The sample nitrided for 4?h possesses the highest wear resistance, due to its relatively smooth surface and ultra-fine grains in the nitrided layer.  相似文献   

8.
In this research, the microstructure, tribological and corrosion properties of plasma nitrided-oxidized AISI 316 austenitic stainless steel at high oxidation temperature were studied and compared with conventional plasma nitride. The structural, tribological and corrosion properties were analyzed using XRD, SEM, microhardness testing, pin-on-disk tribotesting and electrochemical polarization. Plasma nitriding was conducted for 5 h at 450 °C with gas mixture of N2/H2 = 1/3 to produce the S-phase. The nitrided samples were post-oxidized at 500 °C with gas mixture of O2/H2 = 1/5 for 15, 30 and 60 min. X-ray diffraction confirmed the development of CrN, ? and γ′ nitride phases and magnetite (Fe3O4) oxide phase under plasma nitriding-oxidizing process. In addition, it was found that oxidation treatment after plasma nitriding provides an important improvement in the friction coefficient and the corrosion resistance. The optimized wear and corrosion resistance of post-oxidized samples were obtained after 15 min of oxidation.  相似文献   

9.
Duplex surface treatments via aluminizing and plasma nitriding were carried out on AISI 1045 steel. A number of work pieces were aluminized and subsequently plasma nitrided (Al–PN) and other work pieces were plasma nitrided and then aluminized (PN–Al). Aluminizing was carried out via pack process at 1123 K for 5 h and plasma nitriding was performed at 823 K for 5 h. The fabricated steels were characterized using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD) and microhardness testing. Tribological behaviors of the duplex treated AISI 1045 steels were examined against tungsten carbide pin using a pin-on-disc apparatus at room temperature. The PN–Al specimen showed higher surface hardness, lower wear rate and coefficient of friction than the Al–PN one. It was noticed from the worn surfaces that tribo-oxidation plays an important role in wear behavior of both specimens.  相似文献   

10.
A wear-resistant nitrided layer was formed on a 304L austenitic stainless steel substrate by DC plasma nitriding. Effects of DC plasma nitriding parameters on the structural phases, micro-hardness and dry-sliding wear behavior of the nitrided layer were investigated by optical microscopy, X-ray diffraction, scanning electron microscopy, micro-hardness testing and ring-on-block wear testing. The results show that the highest surface hardness over a case depth of about 10 µm is obtained after nitriding at 460 °C. XRD indicated a single expanded austenite phase and a single CrN nitride phase were formed at 350 °C and 480 °C, respectively. In addition, the S-phase layers formed on the samples provided the best dry-sliding wear resistance under the ring-on-block contact configuration test.  相似文献   

11.
The effect of nitriding pressure on the formation of nitrides and the nitriding kinetics in pure iron were investigated by applying pressurized gas nitriding at 500 °C for 5 h. Increasing the nitriding pressure from 1 atm (conventional nitriding condition) to 5 atm significantly increased the nitrided layer thickness from about 210 μm to 1100 μm. Furthermore, it was found that the constituents of the compound layer can be controlled by changing the nitriding pressure. These improvements are related to the fast reaction rates and high inward diffusive flux of nitrogen during the pressurized gas nitriding.  相似文献   

12.
Surface of 304 AISI austenitic stainless steel has been modified using duplex treatment technique of nitriding and carbonitriding. A thick modified nitrided layer, of approximately 20 µm, has been achieved when rf inductively coupled plasma was adjusted at 450 W for processing time of only 10 min. After performing the nitrided layer, the nitrided samples were carbonitrided using the same technique at different acetylene partial pressure ratios ranges from 10% to 70%, the balance was pure nitrogen. Different amount of nitrogen and carbon species are diffused underneath the surface through the nitrided layer during carbonitriding process and are found to be gas composition dependent. The treated samples were characterized by glow discharge optical spectroscopy, X-ray diffractometry, scanning electron microscopy and Vickers microhardness tester. The microstructure of the duplex treated layer indicates the formation of γ?-Fe4N, Fe3C, CrN and nitrogen-expanded austenite (γN). The thickness of the duplex treated layer increases with increasing the acetylene partial pressure ratio. The surface microhardness of duplex treated samples has been found to be gas composition dependent and increased by 1.29 fold in comparison to the nitrided sample.  相似文献   

13.
Titania film is coated on plasma nitrided 316L stainless steel by sol-gel method. Crystallization of titania as well as N loss and formation of Fe2O3 occurs during the annealing heat treatment. The titania film has short cracks within the grooves of plasma etched grain boundaries. With the increase of annealing temperature and duration, surface hardness of the samples is increased, but the toughness is decreased due to oxidization of the surface layer. The coating sample heat treated at 350 °C for 10 min and 450 °C for 10 min has better corrosion resistance than the nitrided stainless steel tested by the potentiodynamic polarization in 0.9% NaCl solution. Water contact angle of the titania film on the rough nitrided steel substrate decreases with UV irradiation treatment, reaching 17° after 3 h treatment.  相似文献   

14.
30CrMnSiA steel has been commonly used in many industrial applications owing to its excellent mechanical properties. However, raw 30CrMnSiA steel cannot meet the requirements of practical application, such as high surface hardness and superior wear resistance. In practice, plasma nitriding (PN) is usually conducted to strengthen the surface properties of this steel. However conventional plasma nitriding (PN) technique is always hindered by diffusion kinetics. Alternatively, the process of laser quenching (LQ) has been utilized as a unique rapid method for tailoring the surface microstructure and chemical composition to improving the mechanical properties of steels. In the present study, a laser quenching technique (LQ) is utilized as subsequent procedure of typical plasma nitriding treatment process (PN) to improve the surface properties of 30CrMnSiA steel. The microstructure and properties of such layer are compared with those obtained by PN or LQ treatment. OM, XRD, SEM and EDS analysis are conducted for microstructure observation, phase identification, and estimating the nitrogen concentration, respectively. Microhardness tester and pin-on-disc tribometer are used to investigate the mechanical properties of the modified layers. Laser quenching of plasma nitrided (PN + LQ) 30CrMnSiA steel results in great increase in the thickness and hardness of the modified layer comparing with the PN and LQ treatment due to the reduction of eutectoid point caused by introduction of nitrogen. The mechanism is also discussed systematically based on the phase diagram in the paper. Moreover, the layer treated by PN + LQ process exhibits better wear resistance than the PN treated specimen. This is attributed to the formation of retained austenite and Fe3O4 according to the XRD analysis, which is beneficial to the improvement of impact toughness and the lubrication action during sliding.  相似文献   

15.
对37CrMoMn钢钻杆接头进行气体渗氮处理,采用光学显微镜(OM)、X射线衍射仪(XRD)、扫描电子显微镜(SEM)、显微硬度计及磨擦磨损试验研究了渗氮层的显微组织、硬度及耐磨性能。结果表明:渗氮层厚达150μm,氮化形成的ζ-FezN相、ε-F-e3N相和Cr2N相等氮化物增强相,使表面硬度显著增加。渗氮层与基体材料相比摩擦系数显著降低,钻杆接头经过渗氮后,耐磨性提高了8倍。  相似文献   

16.
F. Mahboubi  K. Abdolvahabi 《Vacuum》2006,81(3):239-243
A series of experiments have been conducted on DIN 1.6959 low-alloy steel using a 5 kVA DC plasma nitriding apparatus with the aim of elucidating the role of treatment temperature in plasma nitriding process. Treatments were carried out in 75%N2-25%H2 atmosphere of 4 mbar for 5 h at temperatures ranging from 350 to 550 °C. Optical microscopy, scanning electron microscopy, X-ray diffraction, along with surface roughness and microhardness measurements were utilized to characterize the treated samples. The depth, microstructure, hardness profile and phase constituents of the nitrided layers as well as the surface roughness of the samples were assessed as a function of treatment temperature. The results suggested that the compound layers were mostly dual phase consisting of gamma prime and epsilon iron nitride phases. Increasing treatment temperature increases compound layer and diffusion layer thicknesses. However, maximum surface hardness and roughness were found on the samples treated at 500 and 550 °C, respectively.  相似文献   

17.
Plasma nitriding of ASTM F138 stainless steel samples has been carried out using dc glow discharge under 80% H2–20% N2 gas mixture, at 673 K, and 2, 4, and 7 h time intervals, in order to investigate the influence of treatment time on the microstructure and the corrosion resistance properties. The samples were characterized by scanning electron microscopy, glancing angle X-ray diffraction and conversion electron Mössbauer spectroscopy, besides electrochemical tests in NaCl aerated solution. A modified layer of about 6 μm was observed for all the nitrided samples, independent of nitriding time. The X-ray diffraction analysis shows broad γN phase peaks, signifying a great degree of nitrogen supersaturation. Besides γN, the Mössbauer spectroscopy results indicated the occurrence of γ′ and ε phases, as well as some other less important phases. Corrosion measurements demonstrate that the plasma nitriding time affects the corrosion resistance and the best performance is reached at 4 h treatment. It seems that the ε/γ′ fraction ratio plays an important role on the resistance corrosion. Additionally, the Mössbauer spectroscopy was decisive in this study, since it was able to identify and quantify the iron phases that influence the corrosion resistance of plasma nitrided ASTM F138 samples.  相似文献   

18.
The as-quenched Fe–9Al–28Mn–1.8C (in wt.%) alloy was directly gas-nitrided at 500 °C for 8 h, resulting in a ∼30 μm-thick nitrided layer. The nitrided layer consists predominantly of nano-crystalline AlN with a small amount of Fe4N. The nitrogen concentration at surface was extremely high up to ∼17 wt.% (∼41 at.%). Consequently, the surface microhardness (1700 Hv), substrate hardness (550 Hv), ductility (33.2%) and corrosion resistance in 3.5% NaCl solution of the present gas-nitrided alloy are far superior to those obtained previously for the optimally gas-nitrided or plasma-nitrided high-strength alloy steels, as well as martensitic and precipitation-hardening stainless steels. Moreover, it is very novel that the nitrided layer almost remained coherent and adhered well with the matrix after tensile test. Additionally, the present gas nitriding appeared to overcome the edge effects commonly encountered in plasma nitriding treatments for metals.  相似文献   

19.
The influence of layer microstructure on the corrosion behavior of plasma nitrided cold work tool steel, of commercial name “DC53”, in 3.5% NaCl solution is reported. The specimens were nitrided at 520 °C for different treatment times using a constant [N2 + H2] gaseous mixture by a DC-pulsed plasma system. The microstructure of the nitrided layers was investigated by optical microscopy and X-ray diffraction. The corrosion behavior was evaluated by potentiodynamic polarization experiments. The plasma nitriding process considerably improves the corrosion resistance of material in NaCl environment as compared to the unnitrided DC53 steel. The modified surface layer consisting mainly of ε-nitride (Fe2–3N) and a small amount of γ′-nitride (Fe4N) confers this outstanding behavior. The corrosion resistance dependence on specific nitriding processes is reported and the role of the ε-nitride is discussed. In particular, the correlation of pitting current density, density of pits, and volume fraction of ε-nitride with nitriding time is analyzed. The results denote that the most important parameter for controlling the corrosion resistance of the material is the volume fraction of ε-nitride and the nitrided layer thickness. It is expected that a nitrided layer would be thicker and rich in ε-nitride phase to achieve a high corrosion resistance.  相似文献   

20.
Auger electron spectroscopy (AES) depth profiling was used to study the oxidation phenomena of AISI316L stainless steel during treatment with oxygen plasma. Samples were exposed to low-pressure RF plasma with a high dissociation degree, so that the flux of oxygen atoms onto the sample surface exceeded 1024 m−2 s−1. A set of samples was oxidized 4 min at different temperatures up to 1300 K during plasma treatment. AES measurements showed that the oxide film thickness increased with the increasing temperature. The thickness of the oxide film on the samples oxidized in plasma at 300 K was nearly the same as for the untreated sample. The thickness of the oxide film of the samples which were oxidized at 1000 K was about 170 nm and it consisted of iron oxide. The thickest oxide film of about 350 nm was found on the samples heated in oxygen plasma to 1300 K. Depth profiling showed the uppermost layer of manganese oxide, followed by a mixture of chromium oxide and iron oxide. The scanning electron microscope analyses showed a dramatic increase of the surface roughness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号