首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The Dual Reciprocity Method (DRM) is a technique to transform the domain integrals that appear in the boundary element method into equivalent boundary integrals. In this approach the non-linear terms are usually approximated by mathematical interpolation applied to the convective terms of the form of the Navier–Stokes equations. In this paper we introduce a conservative interpolation scheme that satisfies the continuity equation and performs better than pure mathematical interpolation. The new scheme together with a subdomain variation of the dual reciprocity method allows better approximation of the non-linear terms in the Navier–Stokes equations for moderate Reynolds number. Received: 21 January 2000  相似文献   

2.
In this paper, the characteristics of microelectromechanical systems (MEMS) devices are analyzed by a meshless method—point weighted least-squares (PWLS) method. In the present meshless method, field nodes and collocation points are adopted. The field nodes are used to construct the trial functions based on locally supported interpolation domains. The collocation points that can be independent of the field nodes are adopted to evaluate the total residuals of the problem domain and its boundaries. The least-squares technique is used to obtain the solution of the problem by minimizing the functional of the summation of weighted residuals. The present meshless method possesses some advantages compared with the conventional collocation methods, e.g., it is very stable for both regularly or irregularly nodal distributions; the displacement and derivative boundary conditions can be easily enforced; and the final coefficient matrix is symmetric. Several one-dimensional and two- dimensional MEMS devices that are governed by the nonlinear equations are studied by the present PWLS method. The simulated results are compared with those obtained by other simulation approaches and experimental results. It is shown that the PWLS method is very efficient and accurate for the analysis of MEMS devices.  相似文献   

3.
A reproducing kernel particle method with built‐in multiresolution features in a very attractive meshfree method for numerical solution of partial differential equations. The design and implementation of a Galerkin‐based reproducing kernel particle method, however, faces several challenges such as the issue of nodal volumes and accurate and efficient implementation of boundary conditions. In this paper we present a point collocation method based on reproducing kernel approximations. We show that, in a point collocation approach, the assignment of nodal volumes and implementation of boundary conditions are not critical issues and points can be sprinkled randomly making the point collocation method a true meshless approach. The point collocation method based on reproducing kernel approximations, however, requires the calculation of higher‐order derivatives that would typically not be required in a Galerkin method, A correction function and reproducing conditions that enable consistency of the point collocation method are derived. The point collocation method is shown to be accurate for several one and two‐dimensional problems and the convergence rate of the point collocation method is addressed. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

4.
 A meshless method is developed for the stress analysis of two-dimensional solids, based on a local weighted residual method with the Heaviside step function as the weighting function over a local subdomain. Trial functions are constructed using radial basis functions (RBF). The present method is a truly meshless method based only on a number of randomly located nodes. No domain integration is needed, no element matrix assembly is required and no special treatment is needed to impose the essential boundary conditions. Effects of the sizes of local subdomain and interpolation domain on the performance of the present method are investigated. The behaviour of shape parameters of multiquadrics (MQ) has been systematically studied. Example problems in elastostatics are presented and compared with closed-form solutions and show that the proposed method is highly accurate and possesses no numerical difficulties. Received: 10 November 2002 / Accepted: 5 March 2003  相似文献   

5.
Triangular spectral elements with modal shape functions are considered. The use of different types of nodal sets as quadrature grids for the construction of operators involved in the Galerkin formulation of the Navier–Stokes equations is investigated. Specifically, a Jacobi-polynomial tensor-product hierarchical basis is employed and the numerical integration, differentiation and projection on a Cartesian grid, and on two barycentric grids proposed by Blyth and Pozrikidis (2005, IMA J. Appl. Math. 71:153–169) and Taylor et al. (2005, SIAM J. Numer. Anal, Under review) are examined. A comparison of accuracy, efficiency and stability for a standard flow problem with exact solution is presented.  相似文献   

6.
In this study, a micromechanical model is presented to study the combined normal, shear and thermal loading of unidirectional (UD) fiber reinforced composites. An appropriate truly meshless method based on the integral form of equilibrium equations is also developed. This meshless method formulated for the generalized plane strain assumption and employed for solution of the governing partial differential equations of the problem. The solution domain includes a representative volume element (RVE) consists of a fiber surrounded by corresponding matrix in a square array arrangement. A direct interpolation method is employed to enforce the appropriate periodic boundary conditions for the combined thermal, transverse shear and normal loading. The fully bonded fiber–matrix interface condition is considered and the displacement continuity and traction reciprocity are imposed to the fiber–matrix interface. Predictions show excellent agreement with the available experimental, analytical and finite element studies. Comparison of the CPU time between presented method and the conventional meshless local Petrov–Galerkin (MLPG) shows significant reduction of the computational time. The results of this study also revealed that the presented model could provide highly accurate predictions with relatively small number of nodes and less computational time without the complexity of mesh generation.  相似文献   

7.
The Navier-Stokes flow inside an evaporating sessile droplet is studied in the present paper, using sophisticated meshfree numerical methods for the computation of the flow field. This problem relates to numerous modern technological applications, and has attracted several analytical and numerical investigations that expanded our knowledge on the internal microflow during droplet evaporation. Two meshless point collocation methods are applied here to this problem and used for flow computations and for comparison with analytical and more traditional numerical solutions. Particular emphasis is placed on the implementation of the velocity-correction method within the meshless procedure, ensuring the continuity equation with increased precision. The Moving Least Squares (MLS) and the Radial Basis Function (RBF) approximations are employed for the construction of the shape functions, in conjunction with the general framework of the Point Collocation Method (MPC). An augmented linear system for imposing the coupled boundary conditions that apply at the liquid-gas interface, especially the zero shear-stress boundary condition at the interface, is presented. Computations are obtained for regular, Type-I embedded nodal distributions, stressing the positivity conditions that make the matrix of the system stable and convergent. Low Reynolds number (Stokes regime), and elevated Reynolds number (Navier-Stokes regime) conditions have been studied and the solutions are compared to those of analytical and traditional CFD methods. The meshless implementation has shown a relative ease of application, compared to traditional mesh-based methods, and high convergence rate and accuracy.  相似文献   

8.
A new local boundary integral equation (LBIE) method for solving two dimensional transient elastodynamic problems is proposed. The method utilizes, for its meshless implementation, nodal points spread over the analyzed domain and employs the moving least squares (MLS) approximation for the interpolation of the interior and boundary variables. On the global boundary, displacements and tractions are treated as independent variables. The local integral representation of displacements at each nodal point contains both surface and volume integrals, since it employs the simple elastostatic fundamental solution and considers the acceleration term as a body force. On the local boundaries, tractions are avoided with the aid of the elastostatic companion solution. The collocation of the local boundary/volume integral equations at all the interior and boundary nodes leads to a final system of ordinary differential equations, which is solved stepwise by the -Wilson finite difference scheme. Direct numerical techniques for the accurate evaluation of both surface and volume integrals are employed and presented in detail. All the strongly singular integrals are computed directly through highly accurate integration techniques. Three representative numerical examples that demonstrate the accuracy of the proposed methodology are provided.  相似文献   

9.
A meshless method based on the local Petrov–Galerkin approach is applied to inverse transient heat conduction problems in three-dimensional solids with continuously inhomogeneous and anisotropic material properties. The Heaviside step function is used as a test function in the local weak form, leading to the derivation of local integral equations. Nodal points are randomly distributed in the domain analyzed, and each node is surrounded by a spherical subdomain in which a local integral equation is applied. A meshless approximation based on the moving least-squares method is employed in the implementation. After performing spatial integrations, we obtain a system of ordinary differential equations for certain nodal unknowns. A backward finite-difference method is used for the approximation of the diffusive term in the heat conduction equation. A truncated singular-value decomposition is used to solve the ill-conditioned linear system of algebraic equations at each time step. The effectiveness of the meshless local Petrov–Galerkin (MLPG) method for this inverse problem is demonstrated by numerical examples.  相似文献   

10.
A truly meshless approach, point weighted least-squares (PWLS) method, is developed in this paper. In the present PWLS method, two sets of distributed points are adopted, i.e. fields node and collocation point. The field nodes are used to construct the trial functions. In the construction of the trial functions, the radial point interpolation based on local supported radial base function are employed. The collocation points are independent of the field nodes and adopted to form the total residuals of the problem. The weighted least-squares technique is used to obtain the solution of the problem by minimizing the functional of the summation of residuals. The present PWLS method possesses more advantages compared with the conventional collocation methods, e.g. it is very stable; the boundary conditions can be easily enforced; and the final coefficient matrix is symmetric. Several numerical examples of one- and two-dimensional ordinary and partial differential equations (ODEs and PDEs) are presented to illustrate the performance of the present PWLS method. They show that the developed PWLS method is accurate and efficient for the implementation.  相似文献   

11.
We describe an immersed-boundary technique which is adopted from the direct-forcing method. A virtual force based on the rate of momentum changes of a solid body is added to the Navier–Stokes equations. The projection method is used to solve the Navier–Stokes equations. The second-order Adam–Bashford scheme is used for the temporal discretization while the diffusive and the convective terms are discretized using the second-order central difference and upwind schemes, respectively. Some benchmark problems for both stationary and moving solid object have been simulated to demonstrate the capability of the current method in handling fluid–solid interactions. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
This paper aims to develop an implicit meshless approach based on the radial basis function (RBF) for numerical simulation of time fractional diffusion equations. The meshless RBF interpolation is firstly briefed. The discrete equations for two-dimensional time fractional diffusion equation (FDE) are obtained by using the meshless RBF shape functions and the strong-forms of the time FDE. The stability and convergence of this meshless approach are discussed and theoretically proven. Numerical examples with different problem domains and different nodal distributions are studied to validate and investigate accuracy and efficiency of the newly developed meshless approach. It has proven that the present meshless formulation is very effective for modeling and simulation of fractional differential equations.  相似文献   

13.
By use of 4-node isoparametric quadrangle interface element between finite element (FE) and meshless regions, a collocation approach is introduced to couple firstly FE and element-free Galerkin (EFG) method in this paper. By taking derivative of discreteness equilibrium equation at interface element with respect to design variable, a numerical method for discreteness-based shape design sensitivity analysis in interface element is obtained. The design sensitivity analysis (DSA) of coupled FE–EFG method is achieved by employing the DSA of nodal displacement at the interface element. The numerical method presented is testified by examples. It can be observed excellent agreement between the numerical results and the analytical solution. Finally the shape optimization of fillet is achieved by using coupled FE–EFG method. The result obtained show that imposing of the essential boundary condition is easy to implement, the computational time is reduced and the distortion of mesh is avoided.  相似文献   

14.
Lam  K. Y.  Wang  Q. X.  Li  Hua 《Computational Mechanics》2004,33(3):235-244
This paper develops a novel meshless approach, called Local Kriging (LoKriging) method, which is based on the local weak form of the partial differential governing equations and employs the Kriging interpolation to construct the meshless shape functions. Since the shape functions constructed by this interpolation have the delta function property based on the randomly distributed points, the essential boundary conditions can be implemented easily. The local weak form of the partial differential governing equations is obtained by the weighted residual method within the simple local quadrature domain. The spline function with high continuity is used as the weight function. The presently developed LoKriging method is a truly meshless method, as it does not require the mesh, either for the construction of the shape functions, or for the integration of the local weak form. Several numerical examples of two-dimensional static structural analysis are presented to illustrate the performance of the present LoKriging method. They show that the LoKriging method is highly efficient for the implementation and highly accurate for the computation.  相似文献   

15.
This paper investigates the effects of mesh motion on the stability of fluid-flow equations when written in an Arbitrary Lagrangian–Eulerian frame for solving moving boundary flow problems. Employing the advection-diffusion equation as a model problem we present a mathematical proof of the destabilizing effects induced by an arbitrary mesh motion on the stability and convergence of an otherwise stable scheme. We show that the satisfaction of the so-called geometric conservation laws is essential to the development of an identity that plays a crucial role in establishing stability. We explicitly show that the advection dominated case is susceptible to growth in error because of the motion of the computational grid. To retain the bound on the growth in error, the mesh motion techniques need to account for a domain based constraint that minimizes the relative mesh velocity. Analysis presented in this work can also be extended to the Navier–Stokes equations when written in an ALE frame for FSI problems.  相似文献   

16.
A meshless local Petrov-Galerkin (MLPG) method that uses radial basis functions rather than generalized moving least squares (GMLS) interpolations to develop the trial functions in the study of Euler-Bernoulli beam problems is presented. The use of radial basis functions (RBF) in meshless methods is demonstrated for C1 problems for the first time. This interpolation choice yields a computationally simpler method as fewer matrix inversions and multiplications are required than when GMLS interpolations are used. Test functions are chosen as simple weight functions as in the conventional MLPG method. Patch tests, mixed boundary value problems, and problems with complex loading conditions are considered. The radial basis MLPG method yields accurate results for deflections, slopes, moments, and shear forces, and the accuracy of these results is better than that obtained using the conventional MLPG method.Lockheed Martin Space Operations  相似文献   

17.
 The radial basis functions (RBFs) have been proven to have excellent properties for interpolation problems, which can be considered as an efficient scheme for function approximation. In this paper, we will explore another type of approximation problem, that is, the derivative approximation, by the RBFs. A new approach, which is based on the differential quadrature (DQ) approximation for the derivative with RBFs as test functions, is proposed to approximate the first, second, and third order derivatives of a function. The performance of three commonly-used RBFs for some typical expressions of derivatives as well as the computation of one-dimensional Burgers equation are studied. Furthermore, the proposed method is applied to simulate natural convection in a concentric annulus by solving Navier–Stokes equations. The obtained results are compared well with exact data or benchmark solutions. Received: 27 June 2001 / Accepted: 29 July 2002  相似文献   

18.
 In the present paper the Trefftz function as a test function is used to derive the local boundary integral equations (LBIE) for linear elasticity. Since Trefftz functions are regular, much less requirements are put on numerical integration than in the conventional boundary integral method. The moving least square (MLS) approximation is applied to the displacement field. Then, the traction vectors on the local boundaries are obtained from the gradients of the approximated displacements by using Hooke's law. Nodal points are randomly spread on the domain of the analysed body. The present method is a truly meshless method, as it does not need a finite element mesh, either for purposes of interpolation of the solution variables, or for the integration of the energy. Two ways are presented to formulate the solution of boundary value problems. In the first one the local boundary integral equations are written in all nodes (interior and boundary nodes). In the second way the LBIE are written only at the interior nodes and at the nodes on the global boundary the prescribed values of displacements and/or tractions are identified with their MLS approximations. Numerical examples for a square patch test and a cantilever beam are presented to illustrate the implementation and performance of the present method. Received 6 November 2000  相似文献   

19.
A meshless local Petrov-Galerkin (MLPG) method is applied to solve static and dynamic bending problems of linear viscoelastic plates described by the Reissner–Mindlin theory. To this end, the correspondence principle is applied. A weak formulation for the set of governing equations in the Reissner–Mindlin theory with a unit test function is transformed into local integral equations on local subdomains in the mean surface of the plate. Nodal points are randomly spread on the mean surface of the plate and each node is surrounded by a circular subdomain to which local integral equations are applied. A meshless approximation based on the moving least-squares (MLS) method is employed in the numerical implementation.  相似文献   

20.
The hybrid boundary node method (HBNM) retains the meshless attribute of the moving least squares (MLS) approximation and the reduced dimensionality advantages of the boundary element method. However, the HBNM inherits the deficiency of the MLS approximation, in which shape functions lack the delta function property. Thus in the HBNM, boundary conditions are implemented after they are transformed into their approximations on the boundary nodes with the MLS scheme.This paper combines the hybrid displacement variational formulation and the radial basis point interpolation to develop a direct boundary-type meshless method, the hybrid radial boundary node method (HRBNM) for two-dimensional potential problems. The HRBNM is truly meshless, i.e. absolutely no elements are required either for interpolation or for integration. The radial basis point interpolation is used to construct shape functions with delta function property. So unlike the HBNM, the HRBNM is a direct numerical method in which the basic unknown quantity is the real solution of nodal variables, and boundary conditions can be applied directly and easily, which leads to greater computational precision. Some selected numerical tests illustrate the efficiency of the method proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号